Advertisement

Femtosecond Laser-Assisted Cataract Surgery

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Ophthalmology and Optometry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nagy Z.
        • Takacs A.
        • Filkorn T.
        • et al.
        Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery.
        J Refract Surg Thorofare NJ 1995. 2009; 25: 1053-1060
        • Kullman G.
        • Pineda R.
        Alternative applications of the femtosecond laser in ophthalmology.
        Semin Ophthalmol. 2010; 25: 256-264
        • Donaldson K.E.
        • Braga-Mele R.
        • Cabot F.
        • et al.
        Femtosecond laser–assisted cataract surgery.
        J Cataract Refract Surg. 2013; 39: 1753-1763
        • Roberts H.W.
        • Day A.C.
        • O’Brart D.P.
        Femtosecond laser–assisted cataract surgery: a review.
        Eur J Ophthalmol. 2020; 30: 417-429
        • Krueger R.R.
        • Talamo J.H.
        • Lindstrom R.L.
        Textbook of refractive laser assisted cataract surgery (ReLACS).
        Springer Science & Business Media, 2012
        • Wallin T.
        • Parker J.
        • Jin Y.
        • et al.
        Cohort study of 27 cases of endophthalmitis at a single institution.
        J Cataract Refract Surg. 2005; 31: 735-741
        • Masket S.
        • Belani S.
        Proper wound construction to prevent short-term ocular hypotony after clear corneal incision cataract surgery.
        J Cataract Refract Surg. 2007; 33: 383-386
        • Grewal D.S.
        • Basti S.
        Comparison of morphologic features of clear corneal incisions created with a femtosecond laser or a keratome.
        J Cataract Refract Surg. 2014; 40: 521-530
        • Gray B.
        • Binder P.S.
        • Huang L.C.
        • et al.
        Penetrating and intrastromal corneal arcuate incisions in rabbit and human cadaver eyes: manual diamond blade and femtosecond laser-created incisions.
        Eye Contact Lens. 2016; 42: 267-273
        • Kojima T.
        • Takagi M.
        • Ichikawa K.
        • et al.
        Clinical and ex vivo laboratory comparison of the self-sealing properties and dimensional stability between the femtosecond laser and manual clear corneal incisions.
        Acta Ophthalmol (Copenh). 2018; 96: e510-e514
        • Benard-Seguin É.
        • Bostan C.
        • Fadous R.
        • et al.
        Optimization of femtosecond laser-constructed clear corneal wound sealability for cataract surgery.
        J Cataract Refract Surg. 2020; 46: 1611-1617
        • Chen W.
        • Ji M.
        • Wu J.
        • et al.
        Effect of femtosecond laser-assisted steepest-meridian clear corneal incisions on preexisting corneal regular astigmatism at the time of cataract surgery.
        Int J Ophthalmol. 2020; 13: 1895-1900
        • Mastropasqua L.
        • Toto L.
        • Mastropasqua A.
        • et al.
        Femtosecond laser versus manual clear corneal incision in cataract surgery.
        J Refract Surg Thorofare NJ 1995. 2014; 30: 27-33
        • Ferreira T.B.
        • Ribeiro F.J.
        • Pinheiro J.
        • et al.
        Comparison of surgically induced astigmatism and morphologic features resulting from femtosecond laser and manual clear corneal incisions for cataract surgery.
        J Refract Surg Thorofare NJ 1995. 2018; 34: 322-329
        • Zhu S.
        • Qu N.
        • Wang W.
        • et al.
        Morphologic features and surgically induced astigmatism of femtosecond laser versus manual clear corneal incisions.
        J Cataract Refract Surg. 2017; 43: 1430-1435
        • Friedman N.J.
        • Palanker D.V.
        • Schuele G.
        • et al.
        Femtosecond laser capsulotomy.
        J Cataract Refract Surg. 2011; 37: 1189-1198
        • Ram J.
        • Pandey S.K.
        • Apple D.J.
        • et al.
        Effect of in-the-bag intraocular lens fixation on the prevention of posterior capsule opacification.
        J Cataract Refract Surg. 2001; 27: 1039-1046
        • Ho J.D.
        • Liou S.W.
        • Tsai R.J.F.
        • et al.
        Estimation of the effective lens position using a rotating Scheimpflug camera.
        J Cataract Refract Surg. 2008; 34: 2119-2127
        • Abell R.G.
        • Davies P.E.J.
        • Phelan D.
        • et al.
        Anterior capsulotomy integrity after femtosecond laser-assisted cataract surgery.
        Ophthalmology. 2014; 121: 17-24
        • Arbisser L.B.
        • Schultz T.
        • Dick H.B.
        Central dimple-down maneuver for consistent continuous femtosecond laser capsulotomy.
        J Cataract Refract Surg. 2013; 39: 1796-1797
        • Day A.C.
        • Gartry D.S.
        • Maurino V.
        • et al.
        Efficacy of anterior capsulotomy creation in femtosecond laser–assisted cataract surgery.
        J Cataract Refract Surg. 2014; 40: 2031-2034
        • Waltz K.
        • Thompson V.M.
        • Quesada G.
        Precision pulse capsulotomy: Initial clinical experience in simple and challenging cataract surgery cases.
        J Cataract Refract Surg. 2017; 43: 606-614
        • Kelkar J.A.
        • Mehta H.M.
        • Kelkar A.S.
        • et al.
        Precision pulse capsulotomy in phacoemulsification: Clinical experience in Indian eyes.
        Indian J Ophthalmol. 2018; 66: 1272-1277
        • Shin Y.J.
        • Nishi Y.
        • Engler C.
        • et al.
        The effect of phacoemulsification energy on the redox state of cultured human corneal endothelial cells.
        Arch Ophthalmol Chic Ill 1960. 2009; 127: 435-441
        • Murano N.
        • Ishizaki M.
        • Sato S.
        • et al.
        Corneal endothelial cell damage by free radicals associated with ultrasound oscillation.
        Arch Ophthalmol Chic Ill 1960. 2008; 126: 816-821
        • Hayashi K.
        • Hayashi H.
        • Nakao F.
        • et al.
        Risk factors for corneal endothelial injury during phacoemulsification.
        J Cataract Refract Surg. 1996; 22: 1079-1084
        • Abell R.G.
        • Kerr N.M.
        • Vote B.J.
        Femtosecond laser-assisted cataract surgery compared with conventional cataract surgery.
        Clin Experiment Ophthalmol. 2013; 41: 455-462
        • Mayer W.J.
        • Klaproth O.K.
        • Hengerer F.H.
        • et al.
        Impact of crystalline lens opacification on effective phacoemulsification time in femtosecond laser-assisted cataract surgery.
        Am J Ophthalmol. 2014; 157: 426-432.e1
        • Abell R.G.
        • Kerr N.M.
        • Vote B.J.
        Toward zero effective phacoemulsification time using femtosecond laser pretreatment.
        Ophthalmology. 2013; 120: 942-948
        • Krarup T.
        • Ejstrup R.
        • Mortensen A.
        • et al.
        Comparison of refractive predictability and endothelial cell loss in femtosecond laser-assisted cataract surgery and conventional phaco surgery: prospective randomised trial with 6 months of follow-up.
        BMJ Open Ophthalmol. 2019; 4: e000233
        • Takács A.I.
        • Kovács I.
        • Miháltz K.
        • et al.
        Central corneal volume and endothelial cell count following femtosecond laser-assisted refractive cataract surgery compared to conventional phacoemulsification.
        J Refract Surg Thorofare NJ 1995. 2012; 28: 387-391
        • Schultz T.
        • Joachim S.C.
        • Kuehn M.
        • et al.
        Changes in prostaglandin levels in patients undergoing femtosecond laser-assisted cataract surgery.
        J Refract Surg Thorofare NJ 1995. 2013; 29: 742-747
        • Mirshahi A.
        • A Ponto K.
        Changes in pupil area during low-energy femtosecond laser-assisted cataract surgery.
        J Ophthalmic Vis Res. 2019; 14: 251-256
        • Levitz L.
        • Reich J.
        • Roberts T.V.
        • et al.
        Incidence of cystoid macular edema: Femtosecond laser–assisted cataract surgery versus manual cataract surgery.
        J Cataract Refract Surg. 2015; 41: 683-686
        • Ewe S.Y.P.
        • Oakley C.L.
        • Abell R.G.
        • et al.
        Cystoid macular edema after femtosecond laser–assisted versus phacoemulsification cataract surgery.
        J Cataract Refract Surg. 2015; 41: 2373-2378
        • Van Nuffel S.
        • Claeys M.F.
        • Claeys M.H.
        Cystoid macular edema following cataract surgery with low-energy femtosecond laser versus conventional phacoemulsification.
        Clin Ophthalmol Auckl NZ. 2020; 14: 2873-2878
        • Hoffmann P.C.
        • Hütz W.W.
        Analysis of biometry and prevalence data for corneal astigmatism in 23,239 eyes.
        J Cataract Refract Surg. 2010; 36: 1479-1485
        • Lim R.
        • Borasio E.
        • Ilari L.
        Long-term stability of keratometric astigmatism after limbal relaxing incisions.
        J Cataract Refract Surg. 2014; 40: 1676-1681
        • Roberts H.W.
        • Wagh V.K.
        • Sullivan D.L.
        • et al.
        Refractive outcomes after limbal relaxing incisions or femtosecond laser arcuate keratotomy to manage corneal astigmatism at the time of cataract surgery.
        J Cataract Refract Surg. 2018; 44: 955-963
        • Schwarzenbacher L.
        • Schartmüller D.
        • Röggla V.
        • et al.
        One-year results of arcuate keratotomy in patients with low to moderate corneal astigmatism using a low-pulse-energy femtosecond laser.
        Am J Ophthalmol. 2021; 224: 53-65
        • Chan T.C.Y.
        • Ng A.L.K.
        • Wang Z.
        • et al.
        Five-year changes in corneal astigmatism after combined femtosecond-assisted phacoemulsification and arcuate keratotomy.
        Am J Ophthalmol. 2020; 217: 232-239
        • Day A.C.
        • Lau N.M.
        • Stevens J.D.
        Nonpenetrating femtosecond laser intrastromal astigmatic keratotomy in eyes having cataract surgery.
        J Cataract Refract Surg. 2016; 42: 102-109
        • Dick H.B.
        • Schultz T.
        Laser-assisted marking for toric intraocular lens alignment.
        J Cataract Refract Surg. 2016; 42: 7-10