Review Article| Volume 7, ISSUE 1, P263-278, August 2022

Screening for Plaquenil

  • Pushpinder Kanda
    Corresponding author. University of Ottawa Eye Institute, The Ottawa Hospital, General Campus, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada.
    Department of Ophthalmology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
    Search for articles by this author
  • Stuart Coupland
    Department of Ophthalmology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada

    Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada
    Search for articles by this author
  • Chloe Gottlieb
    Department of Ophthalmology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada

    Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada
    Search for articles by this author
  • Lynca Kantungane
    Department of Ophthalmology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
    Search for articles by this author
  • Rustum Karanjia
    Department of Ophthalmology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada

    Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada

    Doheny Eye Institute, Los Angeles, CA, USA

    Doheny Eye Centers UCLA, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
    Search for articles by this author


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Advances in Ophthalmology and Optometry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Plantone D.
        • Koudriavtseva T.
        Current and Future Use of Chloroquine and Hydroxychloroquine in Infectious, Immune, Neoplastic, and Neurological Diseases: A Mini-Review.
        Clin Drug Investig. 2018; 38: 653-671
        • Melles R.B.
        • Marmor M.F.
        The risk of toxic retinopathy in patients on long-term hydroxychloroquine therapy.
        JAMA Ophthalmol. 2014; 132: 1453-1460
        • Jorge A.
        • Ung C.
        • Young L.H.
        • et al.
        Hydroxychloroquine retinopathy - implications of research advances for rheumatology care.
        Nat Rev Rheumatol. 2018; 14: 693-703
        • Xu C.
        • Zhu L.
        • Chan T.
        • et al.
        Chloroquine and Hydroxychloroquine Are Novel Inhibitors of Human Organic Anion Transporting Polypeptide 1A2.
        J Pharm Sci. 2016; 105: 884-890
        • Rosenthal A.R.
        • Kolb H.
        • Bergsma D.
        • et al.
        Chloroquine retinopathy in the rhesus monkey.
        Invest Ophthalmol Vis Sci. 1978; 17: 1158-1175
        • Marmor M.F.
        • Kellner U.
        • Lai T.Y.
        • et al.
        Recommendations on Screening for Chloroquine and Hydroxychloroquine Retinopathy (2016 Revision).
        Ophthalmology. 2016; 123: 1386-1394
        • Marmor M.F.
        • Hu J.
        Effect of disease stage on progression of hydroxychloroquine retinopathy.
        JAMA Ophthalmol. 2014; 132: 1105-1112
        • Pham B.H.
        • Marmor M.F.
        Sequential changes in hydroxychloroquine retinopathy up to 20 years after stopping the drug: implications for mild versus severe Toxicity.
        Retina. 2019; 39: 492-501
        • Tsang A.C.
        • Ahmadi Pirshahid S.
        • Virgili G.
        • et al.
        Hydroxychloroquine and chloroquine retinopathy: a systematic review evaluating the multifocal electroretinogram as a screening test.
        Ophthalmology. 2015; 122: 1239-1251.e4
        • Yusuf I.H.
        • Foot B.
        • Lotery A.J.
        The Royal College of Ophthalmologists recommendations on monitoring for hydroxychloroquine and chloroquine users in the United Kingdom (2020 revision): executive summary.
        Eye (Lond). 2021; 35: 1532-1537
        • Marshall E.
        • Robertson M.
        • Kam S.
        • et al.
        Prevalence of hydroxychloroquine retinopathy using 2018 Royal College of Ophthalmologists diagnostic criteria.
        Eye (Lond). 2021; 35: 343-348
        • Gobbett A.
        • Kotagiri A.
        • Bracewell C.
        • et al.
        Two years' experience of screening for hydroxychloroquine retinopathy.
        Eye (Lond). 2021; 35: 1171-1177
        • Marmor M.F.
        Comparison of screening procedures in hydroxychloroquine toxicity.
        Arch Ophthalmol. 2012; 130: 461-469
        • Melles R.B.
        • Marmor M.F.
        Pericentral retinopathy and racial differences in hydroxychloroquine toxicity.
        Ophthalmology. 2015; 122: 110-116
        • Marmor M.F.
        • Chien F.Y.
        • Johnson M.W.
        Value of red targets and pattern deviation plots in visual field screening for hydroxychloroquine retinopathy.
        JAMA Ophthalmol. 2013; 131: 476-480
        • Chen E.
        • Brown D.M.
        • Benz M.S.
        • et al.
        Spectral domain optical coherence tomography as an effective screening test for hydroxychloroquine retinopathy (the "flying saucer" sign).
        Clin Ophthalmol. 2010; 4: 1151-1158
        • Browning D.J.
        • Lee C.
        Relative sensitivity and specificity of 10-2 visual fields, multifocal electroretinography, and spectral domain optical coherence tomography in detecting hydroxychloroquine and chloroquine retinopathy.
        Clin Ophthalmol. 2014; 8: 1389-1399
        • Greenstein V.C.
        • Amaro-Quireza L.
        • Abraham E.S.
        • et al.
        A comparison of structural and functional changes in patients screened for hydroxychloroquine retinopathy.
        Doc Ophthalmol. 2015; 130: 13-23
        • Lyons J.S.
        • Severns M.L.
        Detection of early hydroxychloroquine retinal toxicity enhanced by ring ratio analysis of multifocal electroretinography.
        Am J Ophthalmol. 2007; 143: 801-809
        • Marmor M.F.
        • Melles R.B.
        Disparity between visual fields and optical coherence tomography in hydroxychloroquine retinopathy.
        Ophthalmology. 2014; 121: 1257-1262
        • Borrelli E.
        • Battista M.
        • Cascavilla M.L.
        • et al.
        Impact of Structural Changes on Multifocal Electroretinography in Patients With Use of Hydroxychloroquine.
        Invest Ophthalmol Vis Sci. 2021; 62: 28
        • Garrity S.T.
        • Jung J.Y.
        • Zambrowski O.
        • et al.
        Early hydroxychloroquine retinopathy: optical coherence tomography abnormalities preceding Humphrey visual field defects.
        Br J Ophthalmol. 2019; 103: 1600-1604
        • Ruberto G.
        • Bruttini C.
        • Tinelli C.
        • et al.
        Early morpho-functional changes in patients treated with hydroxychloroquine: a prospective cohort study.
        Graefes Arch Clin Exp Ophthalmol. 2018; 256: 2201-2210
        • Kellner U.
        • Kellner S.
        • Weinitz S.
        Chloroquine retinopathy: lipofuscin- and melanin-related fundus autofluorescence, optical coherence tomography and multifocal electroretinography.
        Doc Ophthalmol. 2008; 116: 119-127
        • Kellner U.
        • Renner A.B.
        • Tillack H.
        Fundus autofluorescence and mfERG for early detection of retinal alterations in patients using chloroquine/hydroxychloroquine.
        Invest Ophthalmol Vis Sci. 2006; 47: 3531-3538
        • Asanad S.
        • Karanjia R.
        Multifocal electroretinogram.
        StatPearls Publishing, Treasure Island (FL)2021
        • Hoffmann M.B.
        • Bach M.
        • Kondo M.
        • et al.
        ISCEV standard for clinical multifocal electroretinography (mfERG) (2021 update).
        Doc Ophthalmol. 2021; 142: 5-16
        • Bertoli F.
        • Sustar M.
        • Jarc Vidmar M.
        • et al.
        Electrophysiological and SD-OCT findings in patients receiving chloroquine therapy in relation to cumulative dosage and duration of treatment.
        Doc Ophthalmol. 2020; 141: 1-14
        • Lyons J.S.
        • Severns M.L.
        Using multifocal ERG ring ratios to detect and follow Plaquenil retinal toxicity: a review : Review of mfERG ring ratios in Plaquenil toxicity.
        Doc Ophthalmol. 2009; 118: 29-36
        • Saez-Moreno J.A.
        • Dominguez-Hidalgo C.
        • Rodriguez-Ferrer J.M.
        Multifocal ERG Guiding Therapy in a Case of Hydroxychloroquine Premaculopathy.
        Case Rep Ophthalmol Med. 2015; 2015: 656928
        • Tsang A.C.
        • Ahmadi S.
        • Hamilton J.
        • et al.
        The Diagnostic Utility of Multifocal Electroretinography in Detecting Chloroquine and Hydroxychloroquine Retinal Toxicity.
        Am J Ophthalmol. 2019; 206: 132-139
        • Adamptey B.
        • Rudnisky C.J.
        • MacDonald I.M.
        Effect of stopping hydroxychloroquine therapy on the multifocal electroretinogram in patients with rheumatic disorders.
        Can J Ophthalmol. 2020; 55: 38-44
        • Adam M.K.
        • Covert D.J.
        • Stepien K.E.
        • et al.
        Quantitative assessment of the 103-hexagon multifocal electroretinogram in detection of hydroxychloroquine retinal toxicity.
        Br J Ophthalmol. 2012; 96: 723-729
        • Tsang A.
        • Kanda P.
        • Gottlieb C.
        • et al.
        A novel 5-ring multifocal electroretinography stimulus for detecting hydroxychloroquine retinal toxicity.
        Doc Ophthalmol. 2021;
        • Iftikhar M.
        • Kaur R.
        • Nefalar A.
        • et al.
        Microperimetry as a screening test for hydroxychloroquine retinopathy: the hard-Risk-1 Study.
        Retina. 2019; 39: 485-491
        • Alghanem H.
        • Padhi T.R.
        • Chen A.
        • et al.
        Comparison of Fundus-Guided Microperimetry and Multifocal Electroretinography for Evaluating Hydroxychloroquine Maculopathy.
        Transl Vis Sci Technol. 2019; 8: 19
        • Tarakcioglu H.N.
        • Ozkaya A.
        • Yigit U.
        Is optical coherence tomography angiography a useful tool in the screening of hydroxychloroquine retinopathy?.
        Int Ophthalmol. 2021; 41: 27-33
        • Goker Y.S.
        • Ucgul Atilgan C.
        • Tekin K.
        • et al.
        The Validity of Optical Coherence Tomography Angiography as a Screening Test for the Early Detection of Retinal Changes in Patients with Hydroxychloroquine Therapy.
        Curr Eye Res. 2019; 44: 311-315
        • Bulut M.
        • Akidan M.
        • Gozkaya O.
        • et al.
        Optical coherence tomography angiography for screening of hydroxychloroquine-induced retinal alterations.
        Graefes Arch Clin Exp Ophthalmol. 2018; 256: 2075-2081
        • Reichel C.
        • Berlin A.
        • Radun V.
        • et al.
        Quantitative Fundus Autofluorescence in Systemic Chloroquine/Hydroxychloroquine Therapy.
        Transl Vis Sci Technol. 2020; 9: 42
        • Greenstein V.C.
        • Lima de Carvalho Jr., J.R.
        • Parmann R.
        • et al.
        Quantitative Fundus Autofluorescence in HCQ Retinopathy.
        Invest Ophthalmol Vis Sci. 2020; 61: 41
        • Sauer L.
        • Calvo C.M.
        • Vitale A.S.
        • et al.
        Imaging of Hydroxychloroquine Toxicity with Fluorescence Lifetime Imaging Ophthalmoscopy.
        Ophthalmol Retina. 2019; 3: 814-825
        • Debellemaniere G.
        • Flores M.
        • Tumahai P.
        • et al.
        Assessment of parafoveal cone density in patients taking hydroxychloroquine in the absence of clinically documented retinal toxicity.
        Acta Ophthalmol. 2015; 93: e534-e540
        • Babeau F.
        • Busetto T.
        • Hamel C.
        • et al.
        Adaptive optics: a tool for screening hydroxychloroquine-induced maculopathy?.
        Acta Ophthalmol. 2017; 95: e424-e425
        • Lee W.J.
        • Lee B.R.
        • Shin Y.U.
        Retromode imaging: Review and perspectives.
        Saudi J Ophthalmol Apr. 2014; 28: 88-94
        • Ahn S.J.
        • Lee S.U.
        • Lee S.H.
        • et al.
        Evaluation of Retromode Imaging for Use in Hydroxychloroquine Retinopathy.
        Am J Ophthalmol. 2018; 196: 44-52
        • Nuzzi R.
        • Boscia G.
        • Marolo P.
        • et al.
        The Impact of Artificial Intelligence and Deep Learning in Eye Diseases: A Review.
        Front Med (Lausanne). 2021; 8: 710329
        • De Silva T.
        • Jayakar G.
        • Grisso P.
        • et al.
        Deep Learning-Based Automatic Detection of Ellipsoid Zone Loss in Spectral-Domain OCT for Hydroxychloroquine Retinal Toxicity Screening.
        Ophthalmol Sci. 2021; 1: 100060
        • Wright T.
        • Yan P.
        • Easterbrook M.
        Machine learning to identify multifocal ERG deficits in patients taking hydroxychloroquine.
        Invest Ophthalmol Vis Sci. 2019; 60: 5959
        • Shroyer N.F.
        • Lewis R.A.
        • Lupski J.R.
        Analysis of the ABCR (ABCA4) gene in 4-aminoquinoline retinopathy: is retinal toxicity by chloroquine and hydroxychloroquine related to Stargardt disease?.
        Am J Ophthalmol. 2001; 131: 761-766
        • Grassmann F.
        • Bergholz R.
        • Mandl J.
        • et al.
        Common synonymous variants in ABCA4 are protective for chloroquine induced maculopathy (toxic maculopathy).
        BMC Ophthalmol. 2015; 15: 18
        • Petri M.
        • Elkhalifa M.
        • Li J.
        • et al.
        Hydroxychloroquine Blood Levels Predict Hydroxychloroquine Retinopathy.
        Arthritis Rheumatol. 2020; 72: 448-453