Advertisement

Update on the Classification and Management of Corneal Dystrophies

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Ophthalmology and Optometry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Weiss J.S.
        • Møller H.U.
        • Lisch W.
        • et al.
        The IC3D classification of the corneal dystrophies.
        Cornea. 2008; 27: S1
        • Weiss J.S.
        • Møller H.U.
        • Aldave A.J.
        • et al.
        IC3D classification of corneal dystrophies-edition 2.
        Cornea. 2015; 34: 117-159
        • Laibson P.R.
        • Krachmer J.H.
        Familial occurrence of dot (microcystic), map, fingerprint dystrophy of the cornea.
        Invest Ophthalmol. 1975; 14: 397-399
        • El Sanharawi M.
        • Sandali O.
        • Basli E.
        • et al.
        Fourier-domain optical coherence tomography imaging in corneal epithelial basement membrane dystrophy: a structural analysis.
        Am J Ophthalmol. 2015; 159: 755-763.e1
      1. Characteristics of corneal dystrophies: a review from clinical, histological and genetic perspectives.
        Int J Ophthalmol. 2016; https://doi.org/10.18240/ijo.2016.06.20
        • Werblin T.P.
        • Hirst L.W.
        • Stark W.J.
        • et al.
        Prevalence of map-dot-fingerprint changes in the cornea.
        Br J Ophthalmol. 1981; 65: 401-409
        • Allen E.H.A.
        • Courtney D.G.
        • Atkinson S.D.
        • et al.
        Keratin 12 missense mutation induces the unfolded protein response and apoptosis in Meesmann epithelial corneal dystrophy.
        Hum Mol Genet. 2016; 25: 1176-1191
        • Lisch W.
        • Büttner A.
        • Oeffner F.
        • et al.
        Lisch corneal dystrophy is genetically distinct from Meesmann corneal dystrophy and maps to Xp22.3.
        Am J Ophthalmol. 2000; 130: 461-468
        • Kurbanyan K.
        • Sejpal K.D.
        • Aldave A.J.
        • et al.
        In Vivo Confocal microscopic findings in lisch corneal dystrophy.
        Cornea. 2012; 31: 437-441
        • Kaza H.
        • Barik M.R.
        • Reddy M.M.
        • et al.
        Gelatinous drop-like corneal dystrophy: a review.
        Br J Ophthalmol. 2017; 101: 10-15
        • Paliwal P.
        • Gupta J.
        • Tandon R.
        • et al.
        Identification and characterization of a novel TACSTD2 mutation in gelatinous drop-like corneal dystrophy.
        Mol Vis. 2010; 16: 729-739
        • Feder R.S.
        • Jay M.
        • Yue B.Y.J.T.
        • et al.
        Subepithelial mucinous corneal dystrophy. Clinical and pathological correlations.
        Arch Ophthalmol (Chicago, Ill 1960). 1993; 111: 1106-1114
        • Lisch W.
        • Bron A.J.
        • Munier F.L.
        • et al.
        Franceschetti hereditary recurrent corneal erosion.
        Am J Ophthalmol. 2012; 153: 1073-1081.e4
        • Hammar B.
        • Lagali N.
        • Ek S.
        • et al.
        Dystrophia Smolandiensis: a novel morphological picture of recurrent corneal erosions.
        Acta Ophthalmol. 2010; 88: 394-400
        • Hammar B.
        • Björck E.
        • Lind H.
        • et al.
        Dystrophia Helsinglandica: a new type of hereditary corneal recurrent erosions with late subepithelial fibrosis.
        Acta Ophthalmol. 2009; 87: 659-665
        • Soh Y.Q.
        • Kocaba V.
        • Weiss J.S.
        • et al.
        Corneal dystrophies.
        Nat Rev Dis Prim. 2020; 6https://doi.org/10.1038/S41572-020-0178-9
        • Kobayashi A.
        • Sugiyama K.
        In vivo laser confocal microscopy findings for Bowman’s layer dystrophies (Thiel-Behnke and Reis-Bücklers corneal dystrophies).
        Ophthalmology. 2007; 114: 69-75
        • Kuchle M.
        • Green W.R.
        • Volcker H.E.
        • et al.
        Reevaluation of corneal dystrophies of Bowman’s layer and the anterior stroma (Reis-Bücklers and Thiel-Behnke types): a light and electron microscopic study of eight corneas and a review of the literature.
        Cornea. 1995; 14: 333-354
        • Klintworth G.K.
        • Smith C.F.
        • Bowling B.L.
        CHST6 mutations in North American subjects with macular corneal dystrophy: A comprehensive molecular genetic review.
        Mol Vis. 2006; 12: 159-176
        • Nowinska A.K.
        • Wylegala E.
        • Teper S.
        • et al.
        Phenotype and genotype analysis in patients with macular corneal dystrophy.
        Br J Ophthalmol. 2014; 98: 1514-1521
        • Weiss J.S.
        • Kruth H.S.
        • Kuivaniemi H.
        • et al.
        Mutations in the UBIAD1 gene on chromosome short arm 1, region 36, cause Schnyder crystalline corneal dystrophy.
        Invest Ophthalmol Vis Sci. 2007; 48: 5007-5012
        • Bredrup C.
        • Knappskog P.M.
        • Majewski J.
        • et al.
        Congenital stromal dystrophy of the cornea caused by a mutation in the decorin gene.
        Invest Ophthalmol Vis Sci. 2005; 46: 420-426
        • Li S.
        • Tiab L.
        • Jiao X.
        • et al.
        Mutations in PIP5K3 are associated with François-Neetens mouchetée fleck corneal dystrophy.
        Am J Hum Genet. 2005; 77: 54-63
        • Aldave A.J.
        • Rosenwasser G.O.D.
        • Yellore V.S.
        • et al.
        Linkage of Posterior Amorphous Corneal Dystrophy to Chromosome 12q21.33 and Exclusion of Coding Region Mutations in KERA, LUM, DCN, and EPYC.
        Invest Ophthalmol Vis Sci. 2010; 51: 4006
        • Strachan I.M.
        Cloudy central corneal dystrophy of François. Five cases in the same family.
        Br J Ophthalmol. 1969; 53: 192-194
        • Hung C.
        • Ayabe R.I.
        • Wang C.
        • et al.
        Pre-descemet corneal dystrophy and x-linked ichthyosis associated with deletion of Xp22.31 containing the STS gene.
        Cornea. 2013; 32: 1283-1287
        • Matthaei M.
        • Hribek A.
        • Clahsen T.
        • et al.
        Fuchs endothelial corneal dystrophy: clinical, genetic, pathophysiologic, and therapeutic aspects.
        Annu Rev Vis Sci. 2019; 5: 151-175
        • Mok J.-W.
        • Kim H.-S.
        • Joo C.-K.
        Q455V mutation in COL8A2 is associated with Fuchs’ corneal dystrophy in Korean patients.
        Eye. 2009; 23: 895-903
        • Wieben E.D.
        • Aleff R.A.
        • Tang X.
        • et al.
        Trinucleotide Repeat Expansion in the Transcription Factor 4 (TCF4) Gene Leads to Widespread mRNA Splicing Changes in Fuchs’ Endothelial Corneal Dystrophy.
        Invest Ophthalmol Vis Sci. 2017; 58: 343-352
      2. Guier CP, Patel BC, Stokkermans TJ, Gulani AC. Posterior Polymorphous Corneal Dystrophy. 2021 Nov 2. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. PMID: 28613630.

        • Patel S.P.
        • Parker M.D.
        SLC4A11 and the pathophysiology of congenital hereditary endothelial dystrophy.
        Biomed Res Int. 2015; 2015: 1-7
        • Schmid E.
        • Lisch W.
        • Philipp W.
        • et al.
        A New, X-linked Endothelial Corneal Dystrophy.
        Am J Ophthalmol. 2006; 141: 478-487.e3
        • Miller D.D.
        • Hasan S.A.
        • Simmons N.L.
        • et al.
        Recurrent corneal erosion: a comprehensive review.
        Clin Ophthalmol. 2019; 13: 325
        • Itty S.
        • Hamilton S.S.
        • Baratz K.H.
        • et al.
        Outcomes of epithelial debridement for anterior basement membrane dystrophy.
        Am J Ophthalmol. 2007; 144https://doi.org/10.1016/j.ajo.2007.04.024
        • Wong V.W.Y.
        • Chi S.C.C.
        • Lam D.S.C.
        Diamond burr polishing for recurrent corneal erosions: results from a prospective randomized controlled trial.
        Cornea. 2009; 28: 152-156
        • Nagpal R.
        • Maharana P.K.
        • Roop P.
        • et al.
        Phototherapeutic keratectomy.
        Surv Ophthalmol. 2020; 65: 79-108
        • Sridhar M.
        • Rapuano C.J.
        • Cosar C.B.
        • et al.
        Phototherapeutic keratectomy versus diamond burr polishing of Bowman’s membrane in the treatment of recurrent corneal erosions associated with anterior basement membrane dystrophy.
        Ophthalmology. 2002; 109: 674-679
        • Yeung J.Y.T.
        • Hodge W.G.
        Recurrent Meesmann’s corneal dystrophy: treatment with keratectomy and mitomycin C.
        Can J Ophthalmol. 2009; 44: 103-104
        • Alex A.F.
        • Eter N.
        • Uhlig C.E.
        Combined excimer laser photoablation and amniotic membrane overlay for relief of symptomatic discomfort in gelatinous drop-like corneal dystrophy.
        Cornea. 2015; 34: 1316-1317
        • Unal M.
        • Arslan O.S.
        • Atalay E.
        • et al.
        Deep anterior lamellar keratoplasty for the treatment of stromal corneal dystrophies.
        Cornea. 2013; 32: 301-305
        • Unal S.
        • Argin A.
        • Arslan E.
        • et al.
        Bilateral complete avulsion of ocular globes in a Le Fort III maxillofacial fracture: a case report and review of the literature.
        Eur J Ophthalmol. 2005; 15: 123-125
        • Price M.O.
        • Feng M.T.
        • Price F.W.
        Endothelial keratoplasty update 2020.
        Cornea. 2021; 40: 541-547
        • Omoto M.
        • Shimmura S.
        • Hatou S.
        • et al.
        Simultaneous deep anterior lamellar keratoplasty and limbal allograft in bilateral limbal stem cell deficiency.
        Jpn J Ophthalmol. 2010; 54: 537-543
        • Fadlallah A.
        • Jakobiec F.A.
        • Mendoza P.R.
        • et al.
        Boston Type I Keratoprosthesis for treatment of gelatinous drop-like corneal dystrophy after repeated graft failure.
        Semin Ophthalmol. 2015; 30: 150-153
        • Borkar D.S.
        • Veldman P.
        • Colby K.A.
        Treatment of fuchs endothelial dystrophy by descemet stripping without endothelial keratoplasty.
        Cornea. 2016; 35: 1267-1273
        • Blitzer A.L.
        • Colby K.A.
        Update on the surgical management of fuchs endothelial corneal dystrophy.
        Ophthalmol Ther. 2020; 9: 757-765
        • Schlötzer-Schrehardt U.
        • Zenkel M.
        • Strunz M.
        • et al.
        Potential Functional Restoration of Corneal Endothelial Cells in Fuchs Endothelial Corneal Dystrophy by ROCK Inhibitor (Ripasudil).
        Am J Ophthalmol. 2021; 224: 185-199
        • Macsai M.S.
        • Shiloach M.
        Use of Topical Rho Kinase Inhibitors in the Treatment of fuchs dystrophy after descemet stripping only.
        Cornea. 2019; 38: 529-534
        • Moloney G.
        • Garcerant Congote D.
        • Hirnschall N.
        • et al.
        Descemet stripping only supplemented with topical ripasudil for fuchs endothelial dystrophy 12-Month Outcomes of the Sydney Eye Hospital Study.
        Cornea. 2021; 40: 320-326
        • Numa K.
        • Imai K.
        • Ueno M.
        • et al.
        Five-Year Follow-up of First 11 Patients Undergoing Injection of Cultured Corneal Endothelial Cells for Corneal Endothelial Failure.
        Ophthalmology. 2021; 128: 504-514
        • Christie K.A.
        • Courtney D.G.
        • Dedionisio L.A.
        • et al.
        Towards personalised allele-specific CRISPR gene editing to treat autosomal dominant disorders.
        Sci Rep. 2017; 7: 1-11
        • Courtney D.G.
        • Atkinson S.D.
        • Allen E.H.A.
        • et al.
        SiRNA silencing of the mutant keratin 12 allele in corneal limbal epithelial cells grown from patients with Meesmann’s epithelial corneal dystrophy.
        Invest Ophthalmol Vis Sci. 2014; 55: 3352-3360
        • Hu J.
        • Rong Z.
        • Gong X.
        • et al.
        Oligonucleotides targeting TCF4 triplet repeat expansion inhibit RNA foci and mis-splicing in Fuchs’ dystrophy.
        Hum Mol Genet. 2018; 27: 1015-1026