Advertisement

Update on Retinal and Ocular Imaging

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Ophthalmology and Optometry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Panwar N.
        • Huang P.
        • Lee J.
        • et al.
        Fundus photography in the 21st century--a review of recent technological advances and their implications for worldwide healthcare.
        Telemed J E Health. 2016; 22: 198-208
        • He Y.
        • Carass A.
        • Liu Y.
        • et al.
        Structured layer surface segmentation for retina OCT using fully convolutional regression networks.
        Med Image Anal. 2021; 68: 101856
        • Fujimoto J.G.
        • Pitris C.
        • Boppart S.A.
        • et al.
        Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy.
        Neoplasia. 2000; 2: 9-25
        • Abràmoff M.D.
        • Garvin M.K.
        • Sonka M.
        Retinal imaging and image analysis.
        IEEE Rev Biomed Eng. 2010; 3: 169-208
        • Miller A.R.
        • Roisman L.
        • Zhang Q.
        • et al.
        Comparison between spectral-domain and swept-source optical coherence tomography angiographic imaging of choroidal neovascularization.
        Invest Ophthalmol Vis Sci. 2017; 58: 1499-1505
        • Laíns I.
        • Wang J.C.
        • Cui Y.
        • et al.
        Retinal applications of swept source optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA).
        Prog Retin Eye Res. 2021; 84: 100951
        • Sun Z.
        • Yang D.
        • Tang Z.
        • et al.
        Optical coherence tomography angiography in diabetic retinopathy: an updated review.
        Eye (Lond). 2021; 35: 149-161
        • Cui Y.
        • Zhu Y.
        • Lu E.S.
        • et al.
        Widefield swept-source OCT angiography metrics associated with the development of diabetic vitreous hemorrhage: a prospective study.
        Ophthalmology. 2021; 128: 1312-1324
        • Morgan J.I.
        The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay.
        Ophthalmic Physiol Opt. 2016; 36: 218-239
        • Ehlers J.P.
        • Dupps W.J.
        • Kaiser P.K.
        • et al.
        The prospective intraoperative and perioperative ophthalmic imaging with optical coherence tomogRaphy (PIONEER) study: 2-year results.
        Am J Ophthalmol. 2014; 158: 999-1007
        • Ehlers J.P.
        • Goshe J.
        • Dupps W.J.
        • et al.
        Determination of feasibility and utility of microscope-integrated optical coherence tomography during ophthalmic surgery: the DISCOVER Study RESCAN Results.
        JAMA Ophthalmol. 2015; 133: 1124-1132
      1. Steinkerchner, Megan S, Justis P Ehlers. “The Ins and Outs of Intraoperative Oct.” Retina Today, Bryn Mawr Communications, https://retinatoday.com/articles/2021-apr/the-ins-and-outs-of-intraoperative-oct.

        • Shoughy S.S.
        • Arevalo J.F.
        • Kozak I.
        Update on wide- and ultra-widefield retinal imaging.
        Indian J Ophthalmol. 2015; 63: 575-581
        • Silva P.S.
        • Cavallerano J.D.
        • Haddad N.M.
        • et al.
        Peripheral lesions identified on ultrawide field imaging predict increased risk of diabetic retinopathy progression over 4 Years.
        Ophthalmology. 2015; 122: 949-956
        • Tripathy K.
        • Chawla R.
        • Wadekar B.R.
        • et al.
        Evaluation of rhegmatogenous retinal detachments using Optos ultrawide field fundus fluorescein angiography and comparison with ETDRS 7 field overlay.
        J Curr Ophthalmol. 2018; 30: 263-267
        • Quinn N.
        • Csincsik L.
        • Flynn E.
        • et al.
        The clinical relevance of visualising the peripheral retina.
        Prog Retin Eye Res. 2019; 68: 83-109
        • Wessel M.M.
        • Aaker G.D.
        • Parlitsis G.
        • et al.
        Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy.
        Retina. 2012; 32: 785-791
        • Arora R.
        • Goel R.
        • Kumar S.
        • et al.
        Evaluation of SARS-CoV-2 in tears of patients with moderate to severe COVID-19.
        Ophthalmology. 2020; https://doi.org/10.1016/j.ophtha.2020.08.029
        • Kong M.
        • Lee M.Y.
        • Ham D.I.
        Ultrawide-field fluorescein angiography for evaluation of diabetic retinopathy.
        Korean J Ophthalmol. 2012; 26: 428-431
        • Tsui I.
        • Williams B.K.
        • Kok Y.O.
        • et al.
        Reliability of ischemic index grading in common retinal vascular diseases.
        Ophthalmic Surg Lasers Imaging Retina. 2015; 46: 618-625
        • Talks S.J.
        • Manjunath V.
        • Steel D.H.
        • et al.
        New vessels detected on wide-field imaging compared to two-field and seven-field imaging: implications for diabetic retinopathy screening image analysis.
        Br J Ophthalmol. 2015; 99: 1606-1609
        • Ting D.S.W.
        • Pasquale L.R.
        • Peng L.
        • et al.
        Artificial intelligence and deep learning in ophthalmology.
        Br J Ophthalmol. 2019; 103: 167-175
        • Chueh K.M.
        • Hsieh Y.T.
        • Chen H.H.
        • et al.
        Identification of sex and age from macular optical coherence tomography and feature analysis using deep learning.
        Am J Ophthalmol. 2021; 235: 221-228
        • Godara P.
        • Dubis A.M.
        • Roorda A.
        • et al.
        Adaptive optics retinal imaging: emerging clinical applications.
        Optom Vis Sci. 2010; 87: 930-941
        • Zaleska-Żmijewska A.
        • Wawrzyniak Z.M.
        • Dąbrowska A.
        • et al.
        Adaptive Optics (rtx1) high-resolution imaging of photoreceptors and retinal arteries in patients with diabetic retinopathy.
        J Diabetes Res. 2019; 2019: 9548324
        • Shahid K.
        • Kolomeyer A.M.
        • Nayak N.V.
        • et al.
        Ocular telehealth screenings in an urban community.
        Telemed J E Health. 2012; 18: 95-100
        • Kolomeyer A.M.
        • Baumrind B.R.
        • Szirth B.C.
        • et al.
        Fundus autofluorescence and colour fundus imaging compared during telemedicine screening in patients with diabetes.
        J Telemed Telecare. 2013; 19: 209-212
      2. “Retinopathy of Prematurity.” National Eye Institute, U.S. Department of Health and Human Services, 10 July 2019, https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/retinopathy-prematurity.

        • Quinn G.E.
        • Ying G.S.
        • Daniel E.
        • et al.
        Validity of a telemedicine system for the evaluation of acute-phase retinopathy of prematurity.
        JAMA Ophthalmol. 2014; 132: 1178-1184