Advertisement
Review Article| Volume 7, ISSUE 1, P89-118, August 2022

Genetics of Congenital Cataract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Ophthalmology and Optometry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chodick G.
        • Sigurdson A.J.
        • Kleinerman R.A.
        • et al.
        The risk of cataract among survivors of childhood and adolescent cancer: a report from the Childhood Cancer Survivor Study.
        Radiat Res. 2016; 185: 366-374
        • Rahi J.S.
        • Dezateux C.
        • British Congenital Cataract Interest Group
        Measuring and interpreting the incidence of congenital ocular anomalies: lessons from a national study of congenital cataract in the UK.
        Invest Ophthalmol Vis Sci. 2001; 42: 1444-1448
        • Patel A.
        • Hayward J.D.
        • Tailor V.
        • et al.
        The Oculome panel test: next-generation sequencing to diagnose a diverse range of genetic developmental eye disorders.
        Ophthalmology. 2019; 126: 888-907
        • Bell S.
        • Malka S.
        • Lloyd I.C.
        • et al.
        Clinical spectrum and genetic diagnosis of 54 consecutive patients aged 0-25 with bilateral cataracts.
        Genes. 2021; 12: 1-11
        • Yi J.
        • Yun J.
        • Li Z.K.
        • et al.
        Epidemiology and molecular genetics of congenital cataracts.
        Int J Ophthalmol. 2011; 4: 422-432
        • Musleh M.
        • Hall G.
        • Lloyd I.C.
        • et al.
        Diagnosing the cause of bilateral paediatric cataracts: comparison of standard testing with a next-generation sequencing approach.
        Eye (Lond). 2016; 30: 1175-1181
        • Gillespie R.L.
        • Urquhart J.
        • Anderson B.
        • et al.
        Next-generation sequencing in the diagnosis of metabolic disease marked by pediatric cataract.
        Ophthalmology. 2016; 123: 217-220
        • Pichi F.
        • Lembo A.
        • Serafino M.
        • et al.
        Genetics of congenital cataract.
        Dev Ophthalmol. 2016; 57: 1-14
        • Bassnett S.
        • Shi Y.
        • Vrensen G.F.J.M.
        Biological glass: structural determinants of eye lens transparency.
        Philos Trans R Soc Lond B Biol Sci. 2011; 366: 1250-1264
        • Hejtmancik J.F.
        Congenital cataracts and their molecular genetics.
        Semin Cell Dev Biol. 2008; 19: 134-149
        • Ling C.
        • Sui R.
        • Yao F.
        • et al.
        Whole exome sequencing identified a novel truncation mutation in the NHS gene associated with Nance-Horan syndrome.
        BMC Med Genet. 2019; 20: 14
        • Romano M.T.
        • Tafazzoli A.
        • Mattern M.
        • et al.
        Bi-allelic mutations in LSS, encoding lanosterol synthase, cause autosomal-recessive hypotrichosis simplex.
        Am J Hum Genet. 2018; 103: 777-785
        • Augusteyn R.C.
        Alpha-crystallin: a review of its structure and function.
        Clin Exp Optom. 2004; 87: 356-366
        • Shiels A.
        • Hejtmancik J.F.
        Molecular genetics of cataract.
        Prog Mol Biol Translational Sci. 2015; 134: 203-218
        • Perng M.D.
        • Zhang Q.
        • Quinlan R.A.
        Insights into the beaded filament of the eye lens.
        Exp Cell Res. 2007; 313: 2180-2188
        • Nielsen P.A.
        • Baruch A.
        • Shestopalov V.I.
        • et al.
        Lens connexins alpha3Cx46 and alpha8Cx50 interact with zonula occludens protein-1 (ZO-1).
        Mol Biol Cell. 2003; 14: 2470-2481
        • Beyer E.C.
        • Ebihara L.
        • Berthoud V.M.
        Connexin mutants and cataracts.
        Front Pharmacol. 2013; 4: 43
        • Berthoud V.M.
        • Ngezahayo A.
        Focus on lens connexins.
        BMC Cel Biol. 2017; 18: 6
        • Shiels A.
        • Hejtmancik J.F.
        Mutations and mechanisms in congenital and age-related cataracts.
        Exp Eye Res. 2017; 156: 95-102
        • Agre P.
        • Brown D.
        • Nielsen S.
        Aquaporin water channels: unanswered questions and unresolved controversies.
        Curr Opin Cell Biol. 1995; 7: 472-483
        • Shiels A.
        • King J.M.
        • Mackay D.S.
        • et al.
        Refractive defects and cataracts in mice lacking lens intrinsic membrane protein-2.
        Invest Ophthalmol Vis Sci. 2007; 48: 500-508
        • Shiels A.
        • Bennett T.M.
        • Hejtmancik J.F.
        Cat-Map: putting cataract on the map.
        Mol Vis. 2010; 16: 2007-2015
        • Dave A.
        • Martin S.
        • Kumar R.
        • et al.
        EPHA2 mutations contribute to congenital cataract through diverse mechanisms.
        Mol Vis. 2016; 22: 18-30
        • Ansar M.
        • Chung H.L.
        • Taylor R.L.
        • et al.
        Bi-allelic loss-of-function variants in DNMBP cause infantile cataracts.
        Am J Hum Genet. 2018; 103: 568-578
        • Harding P.
        • Toms M.
        • Schiff E.
        • et al.
        EPHA2 Segregates with microphthalmia and congenital cataracts in two unrelated families.
        Int J Mol Sci. 2021; 22: 1-14
        • Park J.E.
        • Son A.I.
        • Hua R.
        • et al.
        Human cataract mutations in EPHA2 SAM domain alter receptor stability and function.
        PLoS ONE. 2012; 7: e36564
        • Anand D.
        • Agrawal S.A.
        • Slavotinek A.
        • et al.
        Mutation update of transcription factor genes FOXE3, HSF4, MAF, and PITX3 causing cataracts and other developmental ocular defects.
        Hum Mutat. 2018; 39: 471-494
        • Ho H.Y.
        • Chang K.H.
        • Nichols J.
        • et al.
        Homeodomain protein Pitx3 maintains the mitotic activity of lens epithelial cells.
        Mech Dev. 2009; 126: 18-29
        • Cassidy L.
        • Taylor D.
        Congenital cataract and multisystem disorders.
        Eye. 1999; 13: 464-473
        • Bull M.J.
        Health supervision for children with Down syndrome.
        Pediatrics. 2011; 128: 393-406
        • Walker J.L.
        • Dixon J.
        • Fenton C.R.
        • et al.
        Two new mutations in exon 3 of theNDP gene: S73X and S101F associated with severe and less severe ocular phenotype, respectively.
        Hum Mutat. 1997; 9: 53-56
        • Coccia M.
        • Brooks S.P.
        • Webb T.R.
        • et al.
        X-linked cataract and Nance-Horan syndrome are allelic disorders.
        Hum Mol Genet. 2009; 18: 2643-2655
        • Brooks S.P.
        • Coccia M.
        • Tang H.R.
        • et al.
        The Nance–Horan syndrome protein encodes a functional WAVE homology domain (WHD) and is important for co-ordinating actin remodelling and maintaining cell morphology.
        Hum Mol Genet. 2010; 19: 2421-2432
        • Bixler D.
        • Higgins M.
        • Hartsfield J.
        The Nance-Horan syndrome: a rare X-linked ocular-dental trait with expression in heterozygous females.
        Clin Genet. 2008; 26: 30-35
        • Ikeda K.S.
        • Iwabe-Marchese C.
        • França Jr., M.C.
        • et al.
        Myotonic dystrophy type 1: frequency of ophthalmologic findings.
        Arquivos de Neuro-Psiquiatria. 2016; 74: 183-188
        • Thornton C.A.
        Myotonic dystrophy.
        Neurol Clin. 2014; 32: 705-719
        • Ruggieri M.
        • Praticò A.D.
        • Serra A.
        • et al.
        Childhood neurofibromatosis type 2 (NF2) and related disorders: from bench to bedside and biologically targeted therapies.
        Acta Otorhinolaryngol Ital. 2016; 36: 345-367
        • Distel B.
        • Erdmann R.
        • Gould S.J.
        • et al.
        A unified nomenclature for peroxisome biogenesis factors.
        J Cell Biol. 1996; 135: 1-3
        • Klouwer F.C.C.
        • Berendse K.
        • Ferdinandusse S.
        • et al.
        Zellweger spectrum disorders: clinical overview and management approach.
        Orphanet J Rare Dis. 2015; 10: 151
        • Khobta A.
        • Epe B.
        Repair of oxidatively generated DNA damage in Cockayne syndrome.
        Mech Ageing Dev. 2013; 134: 253-260
        • Cali J.J.
        • Hsieh C.L.
        • Francke U.
        • et al.
        Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis.
        J Biol Chem. 1991; 266: 7779-7783
        • Nie S.
        • Chen G.
        • Cao X.
        • et al.
        Cerebrotendinous xanthomatosis: a comprehensive review of pathogenesis, clinical manifestations, diagnosis, and management.
        Orphanet J Rare Dis. 2014; 9: 179
        • Coelho A.I.
        • Rubio-Gozalbo M.E.
        • Vicente J.B.
        • et al.
        Sweet and sour: an update on classic galactosemia.
        J Inherit Metab Dis. 2017; 40: 325-342
        • Khokhar S.
        • Pillay G.
        • Dhull C.
        • et al.
        Pediatric cataract.
        Indian J Ophthalmol. 2017; 65: 1340
        • Stambolian D.
        Galactose and cataract.
        Surv Ophthalmol. 1988; 32: 333-349
        • Demirbas D.
        • Coelho A.I.
        • Rubio-Gozalbo M.E.
        • et al.
        Hereditary galactosemia.
        Metabolism. 2018; 83: 188-196
        • Singh M.P.
        • Ram J.
        • Kumar A.
        • et al.
        Infectious agents in congenital cataract in a tertiary care referral center in North India.
        Diagn Microbiol Infect Dis. 2016; 85: 477-481
        • de Jong E.P.
        • Vossen A.C.T.M.
        • Walther F.J.
        • et al.
        How to use… neonatal TORCH testing.
        Arch Dis Child Educ Pract Ed. 2013; 98: 93-98
        • Mc Loone E.
        • Joyce N.
        • Coyle P.
        TORCH testing in non-familial paediatric cataract.
        Eye. 2016; 30: 1275-1276
        • Khokhar S.
        • Gupta S.
        • Yogi R.
        • et al.
        Epidemiology and intermediate-term outcomes of open- and closed-globe injuries in traumatic childhood cataract.
        Eur J Ophthalmol. 2014; 24: 124-130
        • Durrani O.M.
        Degree, duration, and causes of visual loss in uveitis.
        Br J Ophthalmol. 2004; 88: 1159-1162
        • Jobling A.I.
        • Augusteyn R.C.
        What causes steroid cataracts? A review of steroid-induced posterior subcapsular cataracts.
        Clin Exp Optom. 2002; 85: 61-75
        • Lim M.E.
        • Buckley E.G.
        • Prakalapakorn S.G.
        Update on congenital cataract surgery management.
        Curr Opin Ophthalmol. 2017; 28: 87-92
        • Lambert S.R.
        • Aakalu V.K.
        • Hutchinson A.K.
        • et al.
        Intraocular lens implantation during early childhood.
        Ophthalmology. 2019; 126: 1454-1461
        • Russell B.
        • DuBois L.
        • Lynn M.
        • et al.
        The infant aphakia treatment study contact lens experience to age 5 years.
        Eye Contact Lens. 2017; 43: 352-357
      1. Scientific Department TRC of O. Cataract Surgery Guidelines.; 2010.

        • Clark M.M.
        • Stark Z.
        • Farnaes L.
        • et al.
        Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases.
        NPJ Genomic Med. 2018; 3: 16
        • Lenassi E.
        • Clayton-Smith J.
        • Douzgou S.
        • et al.
        Clinical utility of genetic testing in 201 preschool children with inherited eye disorders.
        Genet Med. 2020; 22: 745-751
        • Yeong J.L.
        • Thomas P.
        • Buller J.
        • et al.
        A newly developed web-based resource on genetic eye disorders for users with visual impairment (Gene.Vision): usability study.
        J Med Internet Res. 2021; 23: e19151