Advertisement

Fluorescence In Situ Hybridization in Ocular Oncology

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Ophthalmology and Optometry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fluorescence In Situ Hybridization (FISH). Clare O'Connor, Nature Education Citation: O'Connor, C
        Fluorescence in situ hybridization (FISH).
        Nat Educ. 2008; 1: 171
        • Chang C.M.
        • Schroeder J.C.
        • Huang W.Y.
        • et al.
        Non-Hodgkin's lymphoma (NHL) subtypes defined by common translocations: utility of fluorescence in situ hybridization (FISH) in a case-control study.
        Leuk Res. 2010; 34: 190-195
        • Cui C.
        • Shu W.
        • Li P.
        Fluorescence in situ hybridization: cell-based genetic diagnostic and research applications.
        Front Cell Dev Biol. 2016; : 89
        • Huber D.
        • Voith von Voithenberg L.
        • Kaigala G.V.
        Fluorescence in situ hybridization (FISH): History, limitations and what to expect from micro-scale FISH?.
        Micro Nano Eng. 2018; : 15-24
        • Von Holstein S.L.
        • Fehr A.
        • Heegaard S.
        • et al.
        CRTC1-MAML2 gene fusion in mucoepidermoid carcinoma of the lacrimal gland.
        Oncol Rep. 2012; 27: 1413-1416
        • Tanimoto K.
        • Sekiguchi N.
        • Yokota Y.
        • et al.
        Fluorescence in situ hybridization (FISH) analysis of primary ocular adnexal MALT lymphoma.
        BMC Cancer. 2006; : 249
        • Klufas M.A.
        • Richter E.
        • Itty S.
        • et al.
        Comparison of Gene Expression Profiling and Chromosome 3 Analysis by Fluorescent in situ Hybridization and Multiplex Ligation Probe Amplification in Fine-Needle Aspiration Biopsy Specimens of Uveal Melanoma.
        Ocul Oncol Pathol. 2017; 4: 16-20
        • Coupland S.E.
        • Lake S.L.
        • Zeschnigk M.
        • et al.
        Molecular pathology of uveal melanoma.
        Eye (Lond). 2013; 27: 230-242
        • Thomas van den B.
        • van Beek Jackelien G.M.
        • Vaarwater J.
        • et al.
        Higher Percentage of FISH-Determined Monosomy 3 and 8q Amplification in Uveal Melanoma Cells relate to Poor Patient Prognosis.
        Invest Ophthalmol Vis Sci. 2012; 53: 2668-2674
        • Andersson M.K.
        • Åman P.
        • Stenman G.
        IGF2/IGF1R signaling as a therapeutic target in MYB-positive adenoid cystic carcinomas and other fusion gene-driven tumors.
        Cells. 2019; 8: 913
        • Wang Y.
        • Zhang C.Y.
        • Xia R.H.
        • et al.
        The MYB/miR-130a/NDRG2 axis modulates tumor proliferation and metastatic potential in salivary adenoid cystic carcinoma.
        Cell Death Dis. 2018; 9: 917
        • Almeida-Pinto Y.D.
        • Costa S.F.D.S.
        • de Andrade B.A.B.
        • et al.
        t(6;9) (MYB-NFIB) in head and neck adenoid cystic carcinoma: a systematic review with meta-analysis.
        Oral Dis. 2019; 25: 1277-1282
        • Xu L.
        • Zhao F.
        • Yang W.
        • et al.
        MYB promotes the growth and metastasis of salivary adenoid cystic carcinoma.
        Int J Oncol. 2019; 54: 1579-1590
        • Andersson M.K.
        • Afshari M.K.
        • Andren Y.
        • et al.
        Targeting the oncogenic transcriptional regulator MYB in adenoid cystic carcinoma by inhibition of IGF1R/AKT signaling.
        J Natl Cancer Inst. 2017; 109https://doi.org/10.1093/jnci/djx017
        • Ho A.S.
        • Kannan K.
        • Roy D.M.
        • et al.
        The mutational landscape of adenoid cystic carcinoma.
        Nat Genet. 2013; 45: 791-798
        • Persson M.
        • Andren Y.
        • Mark J.
        • et al.
        Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck.
        Proc Natl Acad Sci U S A. 2009; 106: 18740-18744
        • Brill L.B.
        • Kanner W.A.
        • Fehr A.
        • et al.
        Analysis of MYB expression and MYB-NFIB gene fusions in adenoid cystic carcinoma and other salivary neoplasms.
        Mod Pathol. 2011; 24: 1169-1176
        • Mitani Y.
        • Rao P.H.
        • Futreal P.A.
        • et al.
        Novel chromosomal rearrangements and break points at the t(6;9) in salivary adenoid cystic carcinoma: association with MYB NFIB chimeric fusion, MYB expression, and clinical outcome.
        Clin Cancer Res. 2011; 17: 7003-7014
        • West R.B.
        • Kong C.
        • Clarke N.
        • et al.
        MYB expression and translocation in adenoid cystic carcinomas and other salivary gland tumors with clinicopathologic correlation.
        Am J Surg Pathol. 2011; 35: 92-99
        • Rowley J.D.
        Chromosome translocations: dangerous liaisons revisited.
        Nat Rev Cancer. 2001; 1: 245-250
        • Mudhar H.S.
        Ocular Pathology.
        in: Chaugule S. Honavar S. Finger P. Surgical ophthalmic oncology. Springer, Cham (Switzerland)2019: 175-180
        • Patel R.M.
        • Downs-Kelly E.
        • Weiss S.W.
        • et al.
        Dual-color, break-apart fluorescence in situ hybridization for EWS gene rearrangement distinguishes clear cell sarcoma of soft tissue from malignant melanoma.
        Mod Pathol. 2005; 18: 1585-1590
        • Onozato M.L.
        • Yapp C.
        • Richardson D.
        • et al.
        Highly Multiplexed Fluorescence in Situ Hybridization for in Situ Genomics.
        J Mol Diagn. 2019; 21: 390-407