Advertisement
Review Article| Volume 6, P263-274, August 2021

Glaucoma as a Neurodegenerative Disease

A Clinician Perspective
  • Noel C.Y. Chan
    Correspondence
    Corresponding author. 1/F, Eye Center, Prince of Wales Hospital, Shatin, HKSAR, China.
    Affiliations
    Department of Ophthalmology & Visual Sciences, Prince of Wales Hospital & Alice Ho Miu Ling Nethersole Hospital, 1/F, Eye Center, Prince of Wales Hospital, Shatin, HKSAR, China

    Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, HKSAR, China
    Search for articles by this author
  • Jane W. Chan
    Affiliations
    Doheny Eye Institute, Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA
    Search for articles by this author
      Glaucoma is a neurodegenerative disease with changes in other parts of the central nervous system. Glaucoma should be viewed as a dichotomy, as a sole disease of the eye, not as a primary neurologic disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Ophthalmology and Optometry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Blumberg D.
        • Skatt A.
        • Liebmann J.M.
        Chapter 5 emerging risk factors for glaucoma onset and progression.
        Prog Brain Res. 2015; 221: 81-101
        • Calkins D.J.
        Critical pathogenic events underlying progression of neurodegeneration in glaucoma.
        Prog Retin Eye Res. 2012; 31: 702-719
        • Whitmore A.V.
        • Libby R.T.
        • John S.W.M.
        Glaucoma: thinking in new ways – a role for autonomous axonal self-destruction and other compartmentalized processes?.
        Prog Retin Eye Res. 2005; 24: 639-662
        • Jutley G.
        • Luk S.M.
        • Dehabadi M.H.
        • et al.
        Management of glaucoma as a neurodegerative disease.
        Neurodegener Dis Manag. 2017; 7: 157-172
        • Yücel Y.H.
        • Zhang Q.
        • Weinreb R.N.
        • et al.
        Atrophy of relay neurons in magno- and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma.
        Invest Ophthalmol Vis Sci. 2001; 42: 3216-3222
        • Weber A.J.
        • Chen H.
        • Hubbard W.C.
        • et al.
        Experimental glaucoma and cell size, density, and number in the primary lateral geniculate nucleus.
        Invest Ophthalmol Vis Sci. 2000; 41: 1370-1379
        • Gupta N.
        • Ly T.
        • Zhang Q.
        • et al.
        Chronic ocular hypertension induces dendrite pathology in the lateral geniculate nucleus of the brain.
        Exp Eye Res. 2007; 84: 176-184
        • Yücel Y.H.
        • Zhang Q.
        • Weinreb R.N.
        • et al.
        Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma.
        Prog Retin Eye Res. 2003; 22: 465-481
        • Gupta N.
        • Ang L.C.
        • Noël de Tilly L.
        • et al.
        Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex.
        Br J Ophthalmol. 2006; 90: 674-678
        • Dai H.
        • Mu K.T.
        • Qi J.P.
        • et al.
        Assessment of lateral geniculate nucleus atrophy with 3T MR imaging and correlation with clinical stage of glaucoma.
        AJNR Am J Neuroradiol. 2011; 32: 1347-1353
        • Chen Z.
        • Lin F.
        • Wang J.
        • et al.
        Diffusion tensor magnetic resonance imaging reveals visual pathway damage that correlates with clinical severity in glaucoma.
        Clin Exp Ophthalmol. 2013; 41: 43-49
        • Lu P.
        • Shi L.
        • Du H.
        • et al.
        Reduced white matter integrity in primary open-angle glaucoma: a DTI study using tract-based spatial statistics.
        J Neuroradiol. 2013; 40: 89-93
        • Yu L.
        • Xie B.
        • Yin X.
        • et al.
        Reduced cortical thickness in primary open-angle glaucoma and its relationship to the retinal nerve fiber layer thickness.
        PLoS One. 2013; 8: e73208
        • Qing G.
        • Zhang S.
        • Wang B.
        • et al.
        Functional MRI signal changes in primary visual cortex corresponding to the central normal visual field of patients with primary open-angle glaucoma.
        Invest Ophthalmol Vis Sci. 2010; 51: 4627-4634
        • Chen W.W.
        • Wang N.
        • Cai S.
        Structural brain abnormalities in patients with primary open-angle glaucoma: a study with 3T MR imaging.
        Invest Ophthalmol Vis Sci. 2013; 54: 545-554
        • Frezzotti P.
        • Giorgio A.
        • Toto F.
        • et al.
        Early changes of brain connectivity in primary open angle glaucoma.
        Hum Brain Mapp. 2016; 37: 4581-4596
        • Kitsos G.
        • Zikou A.
        • Bagli E.
        Conventional MRI and magnetisation transfer imaging of the brain and optic pathway in primary open-angle glaucoma.
        B J Ophthalmol. 2009; 82: 896-900
        • Stroman G.A.
        • Stewart W.C.
        • Golnik K.C.
        • et al.
        Magnetic resonance imaging in patients with low-tension glaucoma.
        Arch Ophthalmol. 1995; 113: 168-172
        • Ong K.
        • Farinelli A.
        • Billson F.
        • et al.
        Comparative study of brain magnetic resonance imaging findings in patients with low-tension glaucoma and control subjects.
        Ophthalmology. 1995; 102: 1632-1638
        • Suzuki J.
        • Tomidokoro A.
        • Araie M.
        • et al.
        Visual field damage in normal-tension glaucoma patients with or without ischemic changes in cerebral magnetic resonance imaging.
        Jpn J Ophthalmol. 2004; 48: 340-344
        • Leung D.Y.
        • Tham C.C.
        • Li F.C.
        • et al.
        Silent cerebral infarct and visual field progression in newly diagnosed normal-tension glaucoma.
        Ophthalmology. 2009; 116: 1250-1256
        • Harris A.
        • Zarfati D.
        • Zalish M.
        Reduced cerebrovascular blood flow velocities and vasoreactivity in open-angle glaucoma.
        Am J Ophthalmol. 2003; 135: 144-147
        • Gupta N.
        • Yucel Y.
        Glaucoma as a neurodegenerative disease.
        Curr Opin Ophthalmol. 2007; 18: 110-114
        • Bayer A.U.
        • Ferrari F.
        • Erb C.
        High occurrence rate of glaucoma among patients with Alzheimer’s disease.
        Eur Neurol. 2002; 47: 165-168
        • Bayer A.U.
        • Keller O.N.
        • Ferrari F.
        • et al.
        Association of glaucoma with neurodegenerative diseases with apoptotic cell death: Alzheimer’s disease and Parkinson’s disease.
        Am J Ophthalmol. 2002; 133: 135-137
        • Tamura H.
        • Kawakami H.
        • Kanamoto T.
        • et al.
        High frequency of open angle glaucoma in Japanese patients with Alzheimer’s disease.
        J Neurol Sci. 2006; 246: 79-83
        • Pelletier A.A.
        • Théorět M.E.`.
        • Boutin T.
        • et al.
        Prevalence of glaucoma in hospitalized older adults with Alzheimer’s disease.
        Can J Neurol Sci. 2014; 41: 206-209
        • Eraslan M.
        • Balci S.Y.
        • Cerman E.
        • et al.
        Comparison of optical coherence tomography findings in patients with primary open-angle glaucoma and Parkinson disease.
        J Glaucoma. 2016; 25: e639-e646
        • Lin I.C.
        • Wang Y.H.
        • Wang T.J.
        • et al.
        Glaucoma, Alzheimer’s disease, and Parkinson’s disease: an 8-year population-based follow-up study.
        PLoS One. 2014; 9: e108938
        • Keenan T.D.
        • Goldacre R.
        • Goldacre M.J.
        Associations between primary open angle glaucoma, Alzheimer’s disease and vascular dementia: record linkage study.
        Br J Ophthalmol. 2014; 99: 524-527
        • Tsilis A.G.
        • Tsilidis K.K.
        • Pelidou S.H.
        • et al.
        Systematic review of the association between Alzheimer's disease and chronic glaucoma.
        Clin Ophthalmol. 2014; 8: 2095-2104
        • Chung S.D.
        • Ho J.D.
        • Chen C.H.
        • et al.
        Dementia is associated with open-angle glaucoma: a population-based study.
        Eye. 2015; 29: 1340-1346
        • Helmer C.
        • Malet F.
        • Rougier M.B.
        • et al.
        Is there a link between open-angle glaucoma and dementia? The Three-City—Alienor Cohort.
        Ann Neurol. 2013; 74: 171-179
        • in t’Veld B.A.
        • Ruitenberg A.
        • Hofman A.
        • et al.
        Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease.
        N Engl J Med. 2001; 345: 1515-1521
        • Gao X.
        • Chen H.
        • Schwarzschild M.A.
        • et al.
        Use of ibuprofen and risk of Parkinson disease.
        Neurology. 2011; 76: 863-869
        • Jaturapatporn D.
        • Isaac M.G.
        • McCleery J.
        • et al.
        Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer's disease.
        Cochrane Database Syst Rev. 2012; 15 (CD006378)
        • Llorens-Martín M.
        • Jurado J.
        • Hernández F.
        • et al.
        GSK-3β, a pivotal kinase in Alzheimer disease.
        Front Mol Neurosci. 2014; 7: 1-11
        • Srinivasan M.
        • Lahiri D.K.
        Significance of NF-κB as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimer’s disease and multiple sclerosis.
        Expert Opin Ther Targets. 2015; 19: 471-487
        • Decourt B.
        • Lahiri D.K.
        • Sabbagh M.N.
        Targeting tumor necrosis factor alpha for Alzheimer's disease.
        Curr Alzheimer Res. 2017; 14: 412-425
        • Howell G.R.
        • Soto I.
        • Zhu X.
        • et al.
        Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma.
        J Clin Invest. 2012; 122: 1246-1261
        • Yang J.
        • Patil R.V.
        • Yu H.
        • et al.
        T cell subsets and sIL-2R/IL-2 levels in patients with glaucoma.
        Am J Ophthalmol. 2001; 131: 421-426
        • Huang P.
        • Qi Y.
        • Xu Y.S.
        • et al.
        Serum cytokine alteration is associated with optic neuropathy in human primary open angle glaucoma.
        J Glaucoma. 2010; 19: 324-330
        • Kuchtey J.
        • Rezaei K.A.
        • Jaru-Ampornpan P.
        • et al.
        Multiplex cytokine analysis reveals elevated concentration of interleukin-8 in glaucomatous aqueous humor.
        Invest Ophthalmol Vis Sci. 2010; 51: 6441-6447
        • Sawada H.
        • Fukuchi T.
        • Tanaka T.
        • et al.
        Tumor necrosis factor-alpha concentrations in the aqueous humor of patients with glaucoma.
        Invest Ophthalmol Vis Sci. 2010; 51: 903-906
        • Chrysostomou V.
        • Rezania F.
        • Trounce I.A.
        • et al.
        Oxidative stress and mitochondrial dysfunction in glaucoma.
        Curr Opin Pharmacol. 2013; 13: 12-15
        • Williams P.A.
        • Harder J.M.
        • Foxworth N.E.
        • et al.
        Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice.
        Science. 2017; 355: 756-760
        • Ramdas W.
        • Wolfs R.
        • Kiefte-de Jong J.
        • et al.
        Nutrient intake and risk of open-angle glaucoma: the Rotterdam Study.
        Eur J Epidemiol. 2012; 27: 385-393
        • Huang W.
        • Fileta J.
        • Rawe I.
        • et al.
        Calpain activation in experimental glaucoma.
        Invest Ophthalmol Vis Sci. 2008; 512: 3049-3054
        • Crish S.D.
        • Calkins D.J.
        Neurodegeneration in glaucoma: progression and calcium-dependent intracellular mechanisms.
        Neuroscience. 2011; 176: 1-11
        • Jaeger P.A.
        • Wyss-Coray T.
        All-you-can-eat: autophagy in neurodegeneration and neuroprotection.
        Mol Neurodegener. 2009; 4: 16
        • Russo R.
        • Berliocchi L.
        • Adornetto A.
        • et al.
        In search of new targets for retinal neuroprotection: is there a role for autophagy?.
        Curr Opin Pharmacol. 2013; 13: 72-77
        • Guo L.
        • Salt T.E.
        • Luong V.
        Targeting amyloid-beta in glaucoma treatment.
        Proc Natl Acad Sci U S A. 2007; 104: 13444-13449
        • Tezel G.
        • Chauhan B.C.
        • LeBlanc R.P.
        • et al.
        Immunohistochemical assessment of the glial mitogen-activated protein kinase activation in glaucoma.
        Invest Ophthalmol Vis Sci. 2003; 44: 3025-3033
        • Tanihara H.
        • Hangai M.
        • Sawaguchi S.
        • et al.
        Up-regulation of glial fibrillary acidic protein in the retina of primate eyes with experimental glaucoma.
        Arch Ophthalmol. 1997; 115: 752-756
        • Berdahl J.P.
        • Allingham R.R.
        • Johnson D.H.
        Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma.
        Ophthalmology. 2008; 115: 763-768
        • Ren R.
        • Jonas J.B.
        • Tian G.
        • et al.
        Cerebrospinal fluid pressure in glaucoma: a prospective study.
        Ophthalmology. 2010; 117: 259-266
        • Ren R.
        • Wang N.
        • Zhang X.
        • et al.
        Trans-lamina cribrosa pressure difference correlated with neuroretinal rim area in glaucoma.
        Graefes Arch Clin Exp Ophthalmol. 2011; 249: 1057-1063
        • Siaudvytyte L.
        • Januleviciene I.
        • Daveckaite A.
        • et al.
        Literature review and meta-analysis of translaminar pressure difference in open-angle glaucoma.
        Eye. 2015; 29: 1242-1250
        • Wostyn P.
        • De Groot V.
        • Van Dam D.
        • et al.
        Senescent changes in cerebrospinal fluid circulatory physiology and their role in the pathogenesis of normal-tension glaucoma.
        Am J Ophthalmol. 2013; 156: 5-14.e2
        • Ren R.
        • Wang N.
        • Zhang X.
        • et al.
        Cerebrospinal fluid pressure correlated with body mass index.
        Graefes Arch Clin Exp Ophthalmol. 2012; 250: 445-446
        • Krupin T.
        • Liebmann J.M.
        • Greenfield D.S.
        • et al.
        • Low-Pressure Glaucoma Study Group
        A randomized trial of brimonidine versus timolol in preserving visual function: results from the Low-Pressure Glaucoma Treatment Study.
        Am J Ophthalmol. 2011; 151: 671-681
        • Chang E.
        • Goldberg J.L.
        Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement.
        Ophthalmology. 2012; 119: 979-986
        • Munemasa Y.
        • Kitaoka Y.
        Molecular mechanisms of retinal ganglion cell degeneration in glaucoma and future prospects for cell body and axonal protection.
        Front Cell Neurosci. 2013; 6: 60
        • Cordeiro M.F.
        • Normando E.M.
        • Cardoso M.J.
        • et al.
        Real-time imaging of single neuronal cell apoptosis in patients with glaucoma.
        Brain. 2017; 140: 1757-1767
        • Borrás T.
        The pathway from genes to gene therapy in glaucoma: a review of possibilities for using genes as glaucoma drugs.
        Asia Pac J Ophthalmol (Phila). 2017; 6: 80-93