Advertisement
Review Article| Volume 6, P289-305, August 2021

Download started.

Ok

Advances in Endothelial Keratoplasty Surgery

      Endothelial keratoplasty is a novel approach for treating corneal endothelial disease, which selectively transplants the posterior layers of the cornea.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Ophthalmology and Optometry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Zirm E.
        Eine erfolgreiche totale Keratoplastik.
        Albr von Græfe’s Arch für Ophthalmol. 1906; 64: 580-593
        • Gain P.
        • Jullienne R.
        • He Z.
        • et al.
        Global survey of corneal transplantation and eye banking.
        JAMA Ophthalmol. 2016; 134: 167-173
        • Langenbucher A.
        • Seitz B.
        Changes in corneal power and refraction due to sequential suture removal following nonmechanical penetrating keratoplasty in eyes with keratoconus.
        Am J Ophthalmol. 2006; 141: 287-293
        • Nagra P.K.
        • Hammersmith K.M.
        • Rapuano C.J.
        • et al.
        Wound dehiscence after penetrating keratoplasty.
        Cornea. 2006; 25: 132-135
        • Kang P.C.
        • Klintworth G.K.
        • Kim T.
        • et al.
        Trends in the indications for penetrating keratoplasty, 1980-2001.
        Cornea. 2005; 24: 801-803
        • Tillett C.W.
        Posterior lamellar keratoplasty.
        Am J Ophthalmol. 1956; 41: 3
        • Melles G.R.J.
        • Lander F.
        • Beekhuis W.H.
        • et al.
        Posterior lamellar keratoplasty for a case of pseudophakic bullous keratopathy.
        Am J Ophthalmol. 1999; 127: 340-341
        • Terry M.A.
        • Ousley P.J.
        Deep lamellar endothelial keratoplasty in the first United States patients.
        Cornea. 2001; 20: 239-243
        • Melles G.R.J.
        • Lander F.
        • Nieuwendaal C.
        Sutureless, posterior lamellar keratoplasty: a case report of a modified technique.
        Cornea. 2002; 21: 325-327
        • Terry M.A.
        • Ousley P.J.
        Small-incision deep lamellar endothelial keratoplasty (DLEK): six-month results in the first prospective clinical study.
        Cornea. 2005; 24: 59-65
        • Melles G.R.J.
        • Eggink F.A.G.J.
        • Lander F.
        • et al.
        A surgical technique for posterior lamellar keratoplasty.
        Cornea. 1998; 17: 618-626
        • Melles G.R.J.
        • Kamminga N.
        Techniques for posterior lamellar keratoplasty through a scleral incision.
        Ophthalmologe. 2003; 100: 689-695
        • Melles G.R.J.
        • Wijdh R.H.J.
        • Nieuwendaal C.P.
        A technique to excise the Descemet membrane from a recipient cornea (Descemetorhexis).
        Cornea. 2004; 23: 286-288
        • Gorovoy M.S.
        Descemet-stripping automated endothelial keratoplasty.
        Cornea. 2006; 25: 886-889
        • Lee W.B.
        • Jacobs D.S.
        • Musch D.C.
        • et al.
        Descemet’s stripping endothelial keratoplasty: safety and outcomes. A report by the American Academy of Ophthalmology.
        Ophthalmology. 2009; 116: 1818-1830
        • Price M.O.
        • Fairchild K.M.
        • Price D.A.
        • et al.
        Descemet’s stripping endothelial keratoplasty: five-year graft survival and endothelial cell loss.
        Ophthalmology. 2011; 118: 725-729
        • Park C.Y.
        • Lee J.K.
        • Gore P.K.
        • et al.
        Keratoplasty in the United States: a 10-year review from 2005 through 2014.
        Ophthalmology. 2015; 122: 2432-2442
        • Melles G.R.J.
        • Ong T.S.
        • Ververs B.
        • et al.
        Descemet membrane endothelial keratoplasty (DMEK).
        Cornea. 2006; 25: 987-990
        • Stuart A.J.
        • Romano V.
        • Virgili G.
        • et al.
        Descemet’s membrane endothelial keratoplasty (DMEK) versus Descemet’s stripping automated endothelial keratoplasty (DSAEK) for corneal endothelial failure.
        Cochrane Database Syst Rev. 2018; 2018: CD012097
        • Veldman P.B.
        • Terry M.A.
        • Straiko M.D.
        Evolving indications for Descemet’s stripping automated endothelial keratoplasty.
        Curr Opin Ophthalmol. 2014; 25: 306-311
        • Pavlovic I.
        • Shajari M.
        • Herrmann E.
        • et al.
        Meta- Analysis of postoperative outcome parameters comparing Descemet membrane endothelial keratoplasty versus Descemet stripping automated endothelial keratoplasty.
        Cornea. 2017; 36: 1445-1451
        • Busin M.
        • Patel A.K.
        • Scorcia V.
        • et al.
        Microkeratome-assisted preparation of ultrathin grafts for Descemet stripping automated endothelial keratoplasty.
        Investig Ophthalmol Vis Sci. 2012; 53: 521-524
        • Chamberlain W.
        • Lin C.C.
        • Austin A.
        • et al.
        Descemet endothelial thickness comparison trial: a randomized trial comparing ultrathin Descemet stripping automated endothelial keratoplasty with Descemet membrane endothelial keratoplasty.
        Ophthalmology. 2019; 126: 19-26
        • Duggan M.J.
        • Rose-Nussbaumer J.
        • Lin C.C.
        • et al.
        Corneal higher-order aberrations in Descemet membrane endothelial keratoplasty versus ultrathin DSAEK in the Descemet endothelial thickness comparison trial: a randomized clinical trial.
        Ophthalmology. 2019; 126: 946-957
        • Eye Bank Association of America
        Eye banking statistical report.
        2019 (Available at:) (Accessed December 20, 2020)
        • Agarwal A.
        • Dua H.S.
        • Narang P.
        • et al.
        Pre-Descemet’s endothelial keratoplasty (PDEK).
        Br J Ophthalmol. 2014; 98: 1181-1185
        • Narang P.
        • Agarwal A.
        Pre-Descemet’s endothelial keratoplasty.
        Indian J Ophthalmol. 2017; 65: 443-451
        • Iovieno A.
        • Neri A.
        • Soldani A.M.
        • et al.
        Descemetorhexis without graft placement for the treatment of Fuchs endothelial dystrophy: preliminary results and review of the literature.
        Cornea. 2017; 36: 637-641
        • Borkar D.S.
        • Veldman P.
        • Colby K.A.
        Treatment of Fuchs endothelial dystrophy by Descemet stripping without endothelial keratoplasty.
        Cornea. 2016; 35: 1267-1273
        • Moloney G.
        • Petsoglou C.
        • Ball M.
        • et al.
        Descemetorhexis without grafting for Fuchs endothelial dystrophy-supplementation with topical ripasudil.
        Cornea. 2017; 36: 642-648
        • Huang M.J.
        • Kane S.
        • Dhaliwal D.K.
        Descemetorhexis without endothelial keratoplasty versus DMEK for treatment of Fuchs endothelial corneal dystrophy.
        Cornea. 2018; 37: 1479-1483
        • Okumura N.
        • Koizumi N.
        • Ueno M.
        • et al.
        Enhancement of corneal endothelium wound healing by Rho-associated kinase (ROCK) inhibitor eye drops.
        Br J Ophthalmol. 2011; 95: 1006-1009
        • Koizumi N.
        • Okumura N.
        • Ueno M.
        • et al.
        New therapeutic modality for corneal endothelial disease using Rho-associated kinase inhibitor eye drops.
        Cornea. 2014; 33: S25-S31
        • Okumura N.
        • Koizumi N.
        • Kay E.D.P.
        • et al.
        The ROCK inhibitor eye drop accelerates corneal endothelium wound healing.
        Investig Ophthalmol Vis Sci. 2013; 54: 2439-2502
        • Kinoshita S.
        • Koizumi N.
        • Ueno M.
        • et al.
        Injection of Cultured Cells with a ROCK Inhibitor for Bullous Keratopathy.
        N Engl J Med. 2018; 378: 995-1003
        • Mehta J.S.
        • Kocaba V.
        • Soh Y.Q.
        The future of keratoplasty: cell-based therapy, regenerative medicine, bioengineering keratoplasty, gene therapy.
        Curr Opin Ophthalmol. 2019; 30: 286-291
        • Shen L.
        • Sun P.
        • Zhang C.
        • et al.
        Therapy of corneal endothelial dysfunction with corneal endothelial cell-like cells derived from skin-derived precursors.
        Sci Rep. 2017; 7https://doi.org/10.1038/s41598-017-13787-1
        • Van den Bogerd B.
        • Ní Dhubhghaill S.
        • Zakaria N.
        Characterizing human decellularized crystalline lens capsules as a scaffold for corneal endothelial tissue engineering.
        J Tissue Eng Regen Med. 2018; 12: e2020-e2028
        • Parekh M.
        • Van Den Bogerd B.
        • Zakaria N.
        • et al.
        Fish scale-derived scaffolds for culturing human corneal endothelial cells.
        Stem Cells Int. 2018; 2018https://doi.org/10.1155/2018/8146834
        • Cen Y.J.
        • Feng Y.
        Constructing a novel three-dimensional biomimetic corneal endothelium graft by culturing corneal endothelium cells on compressed collagen gels.
        Chin Med J (Engl). 2018; 131: 1710-1714
        • Okumura N.
        • Hayashi R.
        • Nakano M.
        • et al.
        Effect of trinucleotide repeat expansion on the expression of TCF4 mRNA in Fuchs’ endothelial corneal dystrophy.
        Investig Ophthalmol Vis Sci. 2019; 60: 779-786
        • Wang L.
        • Xiao R.
        • Andres-Mateos E.
        • et al.
        Single stranded adeno-associated virus achieves efficient gene transfer to anterior segment in the mouse eye.
        PLoS One. 2017; 12https://doi.org/10.1371/journal.pone.0182473
        • Vicente-Pascual M.
        • Albano A.
        • Solinís M.
        • et al.
        Gene delivery in the cornea: in vitro & ex vivo evaluation of solid lipid nanoparticle-based vectors.
        Nanomedicine. 2018; 13: 1847-1864
        • Cabral T.
        • DiCarlo J.E.
        • Justus S.
        • et al.
        CRISPR applications in ophthalmologic genome surgery.
        Curr Opin Ophthalmol. 2017; 28: 252-259
        • Uehara H.
        • Zhang X.
        • Pereira F.
        • et al.
        Start codon disruption with CRISPR/Cas9 prevents murine Fuchs’ endothelial corneal dystrophy.
        Biorxiv. 2020; https://doi.org/10.1101/2020.03.18.996728
        • Chang Y.K.
        • Hwang J.S.
        • Chung T.Y.
        • et al.
        SOX2 Activation Using CRISPR/dCas9 Promotes Wound Healing in Corneal Endothelial Cells.
        Stem Cells. 2018; 36: 1851-1862