Optical Coherence Technology in Glaucoma Diagnosis

      Optical coherence tomography is a common technology in ophthalmologic and optometric practice.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Ophthalmology and Optometry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Quigley H.A.
        Glaucoma.
        Lancet. 2011; 377: 1367-1377
        • Kansal V.
        • Armstrong J.J.
        • Pintwala R.
        • et al.
        Optical coherence tomography for glaucoma diagnosis: An evidence based meta-analysis.
        PLoS One. 2018; 13: e0190621
        • Popescu D.P.
        • Choo-Smith L.P.
        • Flueraru C.
        • et al.
        Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications.
        Biophys Rev. 2011; 3: 155
        • Bussel I.I.
        • Wollstein G.
        • Schuman J.S.
        OCT for glaucoma diagnosis, screening and detection of glaucoma progression.
        Br J Ophthalmol. 2014; 98: ii15-ii19
        • Van Melkebeke L.
        • Barbosa-Breda J.
        • Huygens M.
        • et al.
        Optical coherence tomography angiography in glaucoma: a review.
        Ophthalmic Res. 2018; 60: 139-151
        • Dong Z.M.
        • Wollstein G.
        • Schuman J.S.
        Clinical utility of optical coherence tomography in glaucoma.
        Invest Ophthalmol Vis Sci. 2016; 57: OCT556-OCT557
        • Mittal D.
        • Dubey S.
        • Gandhi M.
        • et al.
        Discriminating ability of cirrus and RTVue optical coherence tomography in different stages of glaucoma.
        Indian J Ophthalmol. 2018; 66: 675-680
        • Aydoğan T.
        • İlkay B.
        • Akçay S.
        • et al.
        Evaluation of spectral domain optical coherence tomography parameters in ocular hypertension, preperimetric, and early glaucoma Indian.
        J Ophthalmol. 2017; 65: 1143-1150
        • Hwang Y.H.
        • Kim Y.Y.
        • Kim H.K.
        • et al.
        Ability of cirrus high-definition spectral-domain optical coherence tomography clock-hour, deviation, and thickness maps in detecting photographic retinal nerve fiber layer abnormalities.
        Ophthalmology. 2013; 120: 1380-1387
        • Kuang T.
        • Zhang C.
        • Zangwill L.M.
        • et al.
        Estimating the lead time gained by optical coherence tomography in detecting glaucoma before development of visual field defects.
        Ophthalmology. 2015; 122: 2002-2009
        • Curcio C.A.
        • Allen K.A.
        Topography of ganglion cells in human retina.
        J Comp Neurol. 1990; 300: 5-25
        • Kim K.E.
        • Park K.H.
        Macular imaging by optical coherence tomography in the diagnosis and management of glaucoma.
        Br J Ophthalmol. 2018; 102: 718-724
        • Tan O.
        • Li G.
        • Lu A.T.
        • et al.
        • Advanced Imaging for Glaucoma Study Group
        Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis.
        Ophthalmology. 2008; 115: 949-956
        • Mwanza J.C.
        • Oakley J.D.
        • Budenz D.L.
        • et al.
        Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma.
        Invest Ophthalmol Vis Sci. 2011; 52: 8323-8329
        • Oddone F.
        • Lucenteforte E.
        • Michelessi M.
        • et al.
        Macular versus retinal nerve fiber layer parameters for diagnosing manifest glaucoma: a systematic review of diagnostic accuracy studies.
        Ophthalmology. 2016; 123: 939-949
        • Hood D.C.
        • Raza A.S.
        • de Moraes C.G.
        • et al.
        Glaucomatous damage of the macula.
        Prog Retin Eye Res. 2013; 32: 1-21
        • Seol B.R.
        • Jeoung J.W.
        • Park K.H.
        Glaucoma detection ability of macular ganglion cell-inner plexiform layer thickness in myopic preperimetric glaucoma.
        Invest Ophthalmol Vis Sci. 2015; 56: 8306-8313
        • Hwang Y.H.
        Patterns of macular ganglion cell abnormalities in various ocular conditions.
        Invest Ophthalmol Vis Sci. 2014; 55: 3995-3996
        • Kim N.R.
        • Lim H.
        • Kim J.H.
        • et al.
        Factors associated with false positives in retinal nerve fiber layer color codes from spectral-domain optical coherence tomography.
        Ophthalmology. 2011; 118: 1774-1781
        • Hardin J.S.
        • Taibbi G.
        • Nelson S.C.
        • et al.
        Factors affecting cirrus-HD OCT optic disc scan quality: a review with case examples.
        J Ophthalmol. 2015; 2015: 746150
        • Sayed M.S.
        • Margolis M.
        • Lee R.K.
        Green disease in optical coherence tomography diagnosis of glaucoma.
        Curr Opin Ophthalmol. 2017; 28: 139-153
        • Wang R.K.
        • Jacques S.L.
        • Ma Z.
        • et al.
        Three dimensional optical angiography.
        Opt Express. 2007; 15: 4083-4097
        • Jia Y.
        • Wei E.
        • Wang X.
        • et al.
        Optical coherence tomography angiography of optic disc perfusion in glaucoma.
        Ophthalmology. 2014; 121: 1322-1332
        • Rao H.L.
        • Srinivasan T.
        • Pradhan Z.S.
        • et al.
        Optical coherence tomography angiography and visual field progression in primary angle closure glaucoma.
        J Glaucoma. 2021; 30: e61-e67
        • Shoji T.
        • Zangwill L.M.
        • Akagi T.
        • et al.
        Progressive macula vessel density loss in primary open-angle glaucoma: a longitudinal study.
        Am J Ophthalmol. 2017; 182: 107-117
        • Milani P.
        • Bochicchio S.
        • Urbini L.E.
        • et al.
        Diurnal measurements of macular thickness and vessel density on OCT angiography in healthy eyes and those with ocular hypertension and glaucoma.
        J Glaucoma. 2020; 29: 918-925
        • Lin S.
        • Cheng H.
        • Zhang S.
        • et al.
        Parapapillary choroidal microvasculature dropout is associated with the decrease in retinal nerve fiber layer thickness: a prospective study.
        Invest Ophthalmol Vis Sci. 2019; 60: 838-842
        • Liu L.
        • Jia Y.
        • Takusagawa H.L.
        • et al.
        Optical coherence tomography angiography of the peripapillary retina in glaucoma.
        JAMA Ophthalmol. 2015; 133: 1045-1052
        • Moghimi S.
        • Zangwill L.M.
        • Penteado R.C.
        • et al.
        Macular and optic nerve head vessel density and progressive retinal nerve fiber layer loss in glaucoma.
        Ophthalmology. 2018; 125: 1720-1728
        • Rao H.L.
        • Pradhan Z.S.
        • Weinreb R.N.
        • et al.
        A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma.
        PLoS One. 2017; 12: e0173930
        • Moghimi S.
        • Bowd C.
        • Zangwill L.M.
        • et al.
        Measurement floors and dynamic ranges of OCT and OCT angiography in glaucoma.
        Ophthalmology. 2019; 126: 980-988
        • Shin J.W.
        • Kwon J.
        • Lee J.
        • et al.
        Relationship between vessel density and visual field sensitivity in glaucomatous eyes with high myopia.
        Br J Ophthalmol. 2019; 103: 585-591
        • Rao H.L.
        • Pradhan Z.S.
        • Weinreb R.N.
        • et al.
        Determinants of peripapillary and macular vessel densities measured by optical coherence tomography angiography in normal eyes.
        J Glaucoma. 2017; 26: 491-497