Review Article| Volume 3, ISSUE 1, P1-19, August 2018

Download started.


Optimizing Visual Performance for Sport

      To optimize visual performance in an athlete, a reliable and ecologically valid evaluation of relevant visual performance abilities should be performed.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Advances in Ophthalmology and Optometry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Mann D.T.
        • Williams A.M.
        • Ward P.
        • et al.
        Perceptual-cognitive expertise in sport: a meta-analysis.
        J Sport Exerc Psychol. 2007; 29: 457-478
        • Voss M.W.
        • Kramer A.F.
        • Basak C.
        • et al.
        Are expert athletes expert in the cognitive laboratory? A meta-analytic review of cognition and sport expertise.
        Appl Cogn Psychol. 2010; 24: 812-826
        • Erickson G.B.
        Sports vision: vision care for the enhancement of sports performance.
        Butterworth (Elsevier, St Louis (MO)2007
        • Welford A.T.
        The measurement of sensory-motor performance: survey and reappraisal of twelve years progress.
        Ergonomics. 1960; 3: 89-230
        • Erickson G.B.
        • Citek K.
        • Cove M.
        • et al.
        Reliability of a computer-based system for measuring visual performance skills.
        Optometry. 2011; 82: 528-542
        • Wang L.
        • Krasich K.
        • Bel-Bahar T.
        • et al.
        Mapping the structure of perceptual and visual-motor abilities in healthy young adults.
        Acta Psychol (Amst). 2015; 157: 74-84
        • Murray N.
        • Hunfalvay M.
        • Roberts C.M.
        • et al.
        Reliability and normative data of computerized dynamic visual acuity tests.
        Vision Dev & Rehab. 2017; 3: 23-32
        • Hunfalvay M.
        • Orr R.
        • Murray N.
        • et al.
        Evaluation of stereo acuity in professional baseball and LPGA athletes compared to non-athletes.
        Vis Dev Rehab. 2017; 3: 33-41
        • Burris K.
        • Vittetoe K.
        • Ramger B.
        • et al.
        Sensorimotor abilities predict on-field performance in professional baseball.
        Sci Rep. 2018; 8: 116
        • Harpham J.A.
        • Mihalik J.P.
        • Littleton A.C.
        • et al.
        The effect of visual and sensory performance on head impact biomechanics in college football players.
        Ann Biomed Eng. 2014; 42: 1-10
        • Benjamin W.J.
        Practical optics of contact lens prescription.
        in: Bennett E.S. Weissman B.A. Clinical contact lens practice. Lippincott Williams & Wilkins, Philadelphia2005: 158-159
        • Gardner J.J.
        Doctor’s playbook: the X’s and O’s of fitting athletes.
        Rev Optom. 2001; 138: 73-76
        • Joslin C.E.
        • Wu S.M.
        • McMahon T.T.
        • et al.
        Higher-order wavefront aberrations in corneal refractive therapy.
        Optom Vis Sci. 2003; 80: 805-811
        • Berntsen D.A.
        • Barr J.T.
        • Mitchell G.L.
        The effect of overnight contact lens corneal reshaping on higher-order aberrations and best-corrected visual acuity.
        Optom Vis Sci. 2005; 82: 490-497
        • Wen D.
        • McAlinden C.
        • Flitcroft I.
        • et al.
        Postoperative efficacy, predictability, safety, and visual quality of laser corneal refractive surgery: a network meta-analysis.
        Am J Ophthalmol. 2017; 178: 65-78
        • Laby D.M.
        • Kirschen D.G.
        • De Land P.
        The effect of laser refractive surgery on the on-field performance of professional baseball players.
        Optom. 2005; 76: 647-652
      1. Michaels D. Visual optics and refraction: a clinical approach. 3rd edition. St Louis (MO): Mosby–Year Book. p. 12–3.

        • Kinney J.S.
        • Schlichting C.L.
        • Neri D.
        • et al.
        Various measures of the effectiveness of yellow goggles. Naval Submarine Medical Research Laboratory, report no. 941.
        Naval Submarine Medical Research Laboratory, Groton (CT)1980
        • Kinney J.S.
        • Schlichting C.L.
        • Neri D.F.
        • et al.
        Reaction time to spatial frequencies using yellow and luminance-matched neutral goggles.
        Am J Optom Physiol Opt. 1983; 60: 132-138
        • Krinsky N.I.
        • Landrum J.T.
        • Bone R.A.
        Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye.
        Annu Rev Nutr. 2003; 23: 171-201
        • Landrum J.T.
        • Bone R.A.
        Lutein, zeaxanthin, and the macular pigment.
        Arch Biochem Biophys. 2001; 385: 28-40
        • Bone R.A.
        • Landrum J.T.
        • Cains A.
        Optical density spectra of the macular pigment in vivo and in vitro.
        Vis Res. 1992; 32: 105-110
        • Stringham J.M.
        • Hammond B.R.
        The glare hypothesis for macular pigment function.
        Optom Vis Sci. 2007; 84: 859-864
        • Stringham J.M.
        • Hammond B.R.
        Macular pigment and visual performance under glare conditions.
        Optom Vis Sci. 2008; 85: 82-88
        • Hammond B.R.
        • Fletcher L.M.
        • Roos F.
        • et al.
        A double-blind, placebo-controlled study on the effects of lutein and zeaxanthin on photostress recovery, glare disability, and chromatic contrast.
        Invest Ophthalmol Vis Sci. 2014; 55: 8583-8589
        • Stringham J.N.
        • Garcia P.V.
        • Smith P.A.
        • et al.
        Macular pigment and visual performance in glare: benefits for photostress recovery, disability glare, and visual discomfort.
        Invest Ophthalmol Vis Sci. 2011; 52: 7406-7415
        • Renzi L.M.
        • Hammond B.R.
        The effect of macular pigment on heterochromic luminance contrast.
        Exp Eye Res. 2010; 91: 896-900
        • Wooten B.R.
        • Hammond B.R.
        Macular pigment: influences on visual acuity and visibility.
        Prog Retin Eye Res. 2002; 21: 225-240
        • Vishwanathan R.
        • Neuringer M.
        • Snodderly D.M.
        • et al.
        Macular lutein and zeaxanthin are related to brain lutein and zeaxanthin in primates.
        Nutr Neurosci. 2013; 16: 21-29
        • Renzi-Hammond L.M.
        • Bovier E.R.
        • Fletcher L.M.
        • et al.
        Effects of a lutein and zeaxanthin intervention on cognitive function: a randomized, double-masked, placebo-controlled trial of younger healthy adults.
        Nutrients. 2017; 9: 1246-1259
        • Bovier E.R.
        • Renzi L.M.
        • Hammond B.R.
        A double-blind, placebo-controlled study on the effects of lutein and zeaxanthin on neural processing speed and efficiency.
        PLoS One. 2014; 9: e108178
        • Bovier E.R.
        • Hammond B.R.
        A randomized placebo-controlled study on the effects of lutein and zeaxanthin on visual processing speed in young healthy subjects.
        Arch Biochem Biophys. 2015; 15: 54-57
        • Mewborn C.M.
        • Terry D.P.
        • Renzi-Hammond L.M.
        • et al.
        Relation of retinal and serum lutein and zeaxanthin to white matter integrity in older adults: a diffusion tensor imaging study.
        Arch Clin Neuropsychol. 2017; : 1-14
        • Stahl W.
        • Sies H.
        Effects of carotenoids and retinoids on gap junctional communication.
        Biofactors. 2001; 15: 95-98
        • Appelbaum L.G.
        • Erickson G.
        Sports vision training: a review of the state-of-the-art in digital training techniques.
        Int Rev Sport Exerc Psychol. 2016;
        • Crist R.E.
        • Li W.
        • Gilbert C.D.
        Learning to see: experience and attention in primary visual cortex.
        Nat Neurosci. 2001; 4: 519-525
        • Bavelier D.
        • Green C.S.
        • Pouget A.
        • et al.
        Brain plasticity through the life span: learning to learn and action video games.
        Annu Rev Neurosci. 2012; 35: 391-416
        • Deveau J.
        • Lovcik G.
        • Seitz A.R.
        Broad-based visual benefits from training with an integrated perceptual-learning video game.
        Vis Res. 2014; 99: 134-140
        • Deveau J.
        • Ozer D.J.
        • Seitz A.R.
        Improved vision and on-field performance in baseball through perceptual learning.
        Curr Biol. 2014; 24: R146-R147
        • Parsons B.
        • Magill T.
        • Boucher A.
        • et al.
        Enhancing cognitive function using perceptual-cognitive training.
        Clin EEG Neurosci. 2016; 47: 37-47
        • Legault I.
        • Allard R.
        • Faubert J.
        Healthy older observers show equivalent perceptual-cognitive training benefits to young adults for multiple object tracking.
        Front Psychol. 2013; 4: 323
        • Legault I.
        • Faubert J.
        Perceptual-cognitive training improves biological motion perception: evidence for transferability of training in healthy aging.
        Neuroreport. 2012; 23: 469-473
        • Mangine G.T.
        • Hoffman J.R.
        • Wells A.J.
        • et al.
        Visual tracking speed is related to basketball-specific measures of performance in NBA players.
        J Strength Cond Res. 2014; 28: 2406-2414
        • Romeas T.
        • Faubert J.
        Soccer athletes are superior to non-athletes at perceiving soccer specific and non-sport specific human biological motion.
        Front Psychol. 2015; 6: 705
        • Clark J.F.
        • Ellis J.K.
        • Bench J.
        • et al.
        High-performance vision training improves batting statistics for University of Cincinnati baseball players.
        PLoS One. 2012; 7: e29109
        • Clark J.F.
        • Colosimo A.
        • Ellis J.K.
        • et al.
        Vision training methods for sports concussion mitigation and management.
        J Vis Exp. 2015; 99: e52648
        • Galpin A.J.
        • Li Y.
        • Lohnes C.A.
        • et al.
        A 4-week choice foot speed and choice reaction training program improves agility in previously non-agility trained, but active men and women.
        J Strength Cond Res. 2008; 22: 1901-1907
        • Holliday J.
        Effect of stroboscopic vision training on dynamic visual acuity scores: Nike Vapor Strobe® eyewear. M.S.
        Utah State University, Logan (UT)2013 (Available at:)
        • Mitroff S.R.
        • Friesen P.
        • Bennett D.
        • et al.
        Enhancing ice hockey skills through stroboscopic visual training.
        Athletic Training & Sports Health Care. 2013; 5: 261-264
        • Grooms D.
        • Appelbaum L.G.
        • Onate J.
        Neuroplasticity following anterior cruciate ligament injury: a framework for visual-motor training approaches in rehabilitation.
        J Orthop Sports Phys Ther. 2015; 45: 381-393
        • Land M.F.
        Vision, eye movements, and natural behavior.
        Vis Neurosci. 2009; 26: 51-62
        • Wilson M.
        • Causer J.
        • Vickers J.
        Aiming for excellence: the quiet eye as a characteristic of expertise.
        in: Baker J. Farrow D. Handbook of sport expertise. Routledge/Taylor and Francis, London2015: 22-37
        • Gegenfurtner A.
        • Lehtinen E.
        • Saljo R.
        Expertise differences in the comprehension of visualizations: a meta-analysis of eye-tracking research in professional domains.
        Educ Psychol Rev. 2011; 23: 523-552
        • Fimreite V.
        • Ciuffreda K.J.
        • Yadav N.K.
        Effect of luminance on the visually-evoked potential in visually-normal individuals and in mTBI/concussion.
        Brain Inj. 2015; 29: 1199-1210
        • Ciuffreda K.J.
        • Ludlam D.P.
        • Yadav N.K.
        • et al.
        Traumatic brain injury: visual consequences, diagnosis, and treatment.
        Adv Ophthalmol Optom. 2016; 1: 307-333
        • Gallaway M.
        • Scheiman M.
        • Mitchell G.L.
        Vision therapy for post-concussion vision disorders.
        Optom Vis Sci. 2017; 94: 68-73