Advertisement
Review Article| Volume 3, ISSUE 1, P389-406, August 2018

Download started.

Ok

Polymerase Chain Reaction in the Diagnosis of Uveitis

      Polymerase chain reaction (PCR) has improved diagnostic capabilities in infectious uveitis, especially in atypical clinical presentations of herpes viruses and toxoplasmosis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Ophthalmology and Optometry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Saiki R.
        • Scharf S.
        • Faloona F.
        • et al.
        Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia.
        Science. 1985; 239: 1350-1354
        • Sheikine Y.
        • Rangachari D.
        • McDonald D.C.
        • et al.
        EGFR testing in advanced non–small-cell lung cancer, a mini-review.
        Clin Lung Cancer. 2016; 17: 483-492
        • Gefrides L.
        • Welch K.
        Forensic biology: serology and DNA. In: the forensic laboratory handbook procedures and practice..
        Humana Press, New York2011: 509-537
        • Garibyan L.
        • Avashia N.
        Polymerase chain reaction.
        J Invest Dermatol. 2013; 133: 1-4
        • Biswas J.
        • Kazi M.
        • Agarwal V.
        • et al.
        Polymerase chain reaction for Mycobacterium tuberculosis DNA detection from ocular fluids in patients with various types of choroiditis in a referral eye center in India.
        Indian J Ophthalmol. 2016; 64: 904
        • Shetty S.B.
        • Biswas J.
        • Murali S.
        Real-time and nested polymerase chain reaction in the diagnosis of multifocal serpiginoid choroiditis caused by Mycobacterium tuberculosis - a case report.
        J Ophthalmic Inflamm Infect. 2014; 4: 29
        • Pleyer U.
        • Priem S.
        • Bergmann L.
        • et al.
        Detection of Borrelia burgdorferi DNA in urine of patients with ocular Lyme borreliosis.
        Br J Ophthalmol. 2001; 85: 552-555
        • Quentin C.D.
        • Reiber H.
        Fuchs heterochromic cyclitis: Rubella virus antibodies and genome in aqueous humor.
        Am J Ophthalmol. 2004; 138: 46-54
        • de Visser L.
        • Braakenburg A.
        • Rothova A.
        • et al.
        Rubella virus-associated uveitis: clinical manifestations and visual prognosis.
        Am J Ophthalmol. 2008; 146: 292-297
        • Suzuki J.
        • Goto H.
        • Komase K.
        • et al.
        Rubella virus as a possible etiological agent of Fuchs heterochromic iridocyclitis.
        Graefes Arch Clin Exp Ophthalmol. 2010; 248: 1487-1491
        • Sharma K.
        • Gupta V.
        • Bansal R.
        • et al.
        Novel multi-targeted polymerase chain reaction for diagnosis of presumed tubercular uveitis.
        J Ophthalmic Inflamm Infect. 2013; 3: 25
        • Sugita S.
        • Ogawa M.
        • Inoue S.
        • et al.
        Diagnosis of ocular toxoplasmosis by two polymerase chain reaction (PCR) examinations: qualitative multiplex and quantitative real-time.
        Jpn J Ophthalmol. 2011; 55: 495-501
        • Kumar A.
        • Singh M.P.
        • Bansal R.
        • et al.
        Development and evaluation of multiplex real-time PCR for diagnosis of HSV-1, VZV, CMV, and Toxoplasma gondii in patients with infectious uveitis.
        Diagn Microbiol Infect Dis. 2017; 89: 191-196
        • Hong Y.J.
        • Lim M.S.
        • Hwang S.M.
        • et al.
        Detection of herpes simplex and varicella-zoster virus in clinical specimens by multiplex real-time PCR and melting curve analysis.
        Biomed Res Int. 2014; 2014https://doi.org/10.1155/2014/261947
        • Sugita S.
        • Shimizu N.
        • Watanabe K.
        • et al.
        Use of multiplex PCR and real-time PCR to detect human herpes virus genome in ocular fluids of patients with uveitis.
        Br J Ophthalmol. 2008; 92: 928-932
        • Rajan M.S.
        • Pantelidis P.
        • Tong C.Y.W.
        • et al.
        Diagnosis of Treponema pallidum in vitreous samples using real time polymerase chain reaction.
        Br J Ophthalmol. 2006; 90: 647-648
        • Cornut P.-L.
        • Sobas C.R.
        • Perard L.
        • et al.
        Detection of Treponema pallidum in aqueous humor by real-time polymerase chain reaction.
        Ocul Immunol Inflamm. 2011; 19: 127-128
        • Gondchawar A.
        • Biswas J.
        • Murali S.
        • et al.
        A case of herpes simplex keratouveitis diagnosed by real time polymerase chain reaction.
        Indian J Ophthalmol. 2015; 63: 854
        • Steeples L.R.
        • Guiver M.
        • Jones N.P.
        Real-time PCR using the 529 bp repeat element for the diagnosis of atypical ocular toxoplasmosis.
        Br J Ophthalmol. 2016; 100: 200-203
        • Arber D.
        Molecular diagnostic approach to non-Hodgkin’s lymphoma.
        J Mol Diagnoses. 2000; 2: 178-190
        • Sugita S.
        • Shimizu N.
        • Watanabe K.
        • et al.
        Diagnosis of bacterial endophthalmitis by broad-range quantitative PCR.
        Br J Ophthalmol. 2011; 95: 345-349
        • Ogawa M.
        • Sugita S.
        • Shimizu N.
        • et al.
        Broad-range real-time PCR assay for detection of bacterial DNA in ocular samples from infectious endophthalmitis.
        Jpn J Ophthalmol. 2012; 56: 529-535
        • Ogawa M.
        • Sugita S.
        • Watanabe K.
        • et al.
        Novel diagnosis of fungal endophthalmitis by broad-range real-time PCR detection of fungal 28S ribosomal DNA.
        Graefes Arch Clin Exp Ophthalmol. 2012; 250: 1877-1883
        • Sugita S.
        • Kamoi K.
        • Ogawa M.
        • et al.
        Detection of Candida and Aspergillus species DNA using broad-range real-time PCR for fungal endophthalmitis.
        Graefes Arch Clin Exp Ophthalmol. 2012; 250: 391-398
        • Sugita S.
        • Ogawa M.
        • Shimizu N.
        • et al.
        Use of a comprehensive polymerase chain reaction system for diagnosis of ocular infectious diseases.
        Ophthalmology. 2013; 120: 1761-1768
        • Nakano S.
        • Sugita S.
        • Tomaru Y.
        • et al.
        Establishment of multiplex solid-phase strip PCR test for detection of 24 ocular infectious disease pathogens.
        Investig Ophthalmol Vis Sci. 2017; 58: 1553-1559
        • Bhat P.
        • Jackson A.T.
        • Foster C.S.
        Infectious uveitis. In: ocular disease: mechanisms and management.
        Current Ophthalmology Reports. 2010; 3 (https://doi.org/10.1016/B978-0-7020-2983-7.00083-8): 654-655
        • Markomichelakis N.N.
        • Canakis C.
        • Zafirakis P.
        • et al.
        Cytomegalovirus as a cause of anterior uveitis with sectoral iris atrophy.
        Ophthalmology. 2002; 109: 879-882
        • van Boxtel L.A.A.
        • van der Lelij A.
        • van der Meer J.
        • et al.
        Cytomegalovirus as a cause of anterior uveitis in immunocompetent patients.
        Ophthalmology. 2007; 114: 1358-1362
        • Cottet L.
        • Kaiser L.
        • Hirsch H.H.
        • et al.
        HSV2 acute retinal necrosis: diagnosis and monitoring with quantitative polymerase chain reaction.
        Int Ophthalmol. 2009; 29: 199-201
        • Wimmersberger Y.
        • Gervaix A.
        • Baglivo E.
        VZV retinal vasculitis without systemic infection: diagnosis and monitoring with quantitative polymerase chain reaction.
        Int Ophthalmol. 2010; 30: 73-75
        • Van Gelder R.N.
        CME review: polymerase chain reaction diagnostics for posterior segment disease.
        Retina. 2003; 23: 445-452
        • De Boer J.H.
        • Verhagen C.
        • Bruinenberg M.
        • et al.
        Serologic and polymerase chain reaction analysis of intraocular fluids in the diagnosis of infectious uveitis.
        Am J Ophthalmol. 1996; 121: 650-658
        • Abe T.
        • Tsuchida K.
        • Tamai M.
        A comparative study of the polymerase chain reaction and local antibody production in acute retinal necrosis syndrome and cytomegalovirus retinitis.
        Graefes Arch Clin Exp Ophthalmol. 1996; 234: 419-424
        • Cunningham E.T.
        • Short G.A.
        • Irvine A.R.
        • et al.
        Acquired immunodeficiency syndrome–associated herpes simplex virus retinitis. Clinical description and use of a polymerase chain reaction–based assay as a diagnostic tool.
        Arch Ophthalmol. 1996; 114: 834-840
        • McCann J.D.
        • Margolis T.P.
        • Wong M.G.
        • et al.
        A sensitive and specific polymerase chain reaction-based assay for the diagnosis of cytomegalovirus retinitis.
        Am J Ophthalmol. 1995; 120: 219-226
        • Pendergast S.D.
        • Werner J.
        • Drevon A.
        • et al.
        Absence of herpesvirus DNA by polymerase chain reaction in ocular fluids obtained from immunocompetent patients.
        Retina. 2000; 20: 389-393
        • Takase H.
        • Kubono R.
        • Terada Y.
        • et al.
        Comparison of the ocular characteristics of anterior uveitis caused by herpes simplex virus, varicella-zoster virus, and cytomegalovirus.
        Jpn J Ophthalmol. 2014; 58: 473-482
        • Mochizuki M.
        • Watanabe T.
        • Yamaguchi K.
        • et al.
        HTLV-I Uveitis: a distinct clinical entity caused by HTLV-I.
        Jpn J Cancer Res. 1992; 83: 236-239
        • Kamoi K.
        • Mochizuki M.
        HTLV-1 uveitis. In: intraocular inflammation.
        Frontiers in Microbiology. 2016; 3 (https://doi.org/10.1007/978-3-540-75387-2_112): 1197-1201
        • Lado M.
        • Walker N.F.
        • Baker P.
        • et al.
        Clinical features of patients isolated for suspected Ebola virus disease at Connaught Hospital, Freetown, Sierra Leone: a retrospective cohort study.
        Lancet Infect Dis. 2015; 15: 1024-1033
        • Varkey J.B.
        • Shantha J.G.
        • Crozier I.
        • et al.
        Persistence of Ebola Virus in Ocular Fluid during Convalescence.
        N Engl J Med. 2015; 372: 2423-2427
        • Fitzpatrick G.
        • Vogt F.
        • Gbabai O.B.M.
        • et al.
        The Contribution of Ebola Viral Load at Admission and Other Patient Characteristics to Mortality in a Médecins Sans Frontières Ebola Case Management Centre, Kailahun, Sierra Leone, June-October 2014.
        J Infect Dis. 2015; 212: 1752-1758
        • Yip V.C.-H.
        • Sanjay S.
        • Koh Y.T.
        Ophthalmic complications of dengue fever: a systematic review.
        Ophthalmol Ther. 2012; 1: 2
        • Musso D.
        • Gubler D.J.
        Zika virus.
        Clin Microbiol Rev. 2016; 29: 487-524
        • Furtado J.M.
        • Espósito D.L.
        • Klein T.M.
        • et al.
        Uveitis Associated with Zika Virus Infection.
        N Engl J Med. 2016; 375: 394-396
        • Yahia S.B.
        • Khairallah M.
        Ocular manifestations of West Nile virus infection.
        Int J Med Sci. 2009; 6: 114-115
        • De Filette M.
        • Ulbert S.
        • Diamond M.S.
        • et al.
        Recent progress in West Nile virus diagnosis and vaccination.
        Vet Res. 2012; 43: 16
        • Chiquet C.
        • Cornut P.L.
        • Benito Y.
        • et al.
        Eubacterial PCR for bacterial detection and identification in 100 acute postcataract surgery endophthalmitis.
        Investig Ophthalmol Vis Sci. 2008; 49: 1971-1978
        • Gupta V.
        • Shoughy S.S.
        • Mahajan S.
        • et al.
        Clinics of ocular tuberculosis.
        Ocul Immunol Inflamm. 2015; 23: 14-24
        • Agarwal A.
        • Agrawal R.
        • Gunasekaran D.
        • et al.
        The Collaborative Ocular Tuberculosis Study (COTS)-1 Report 3: polymerase chain reaction in the diagnosis and management of tubercular uveitis: global trends.
        Ocul Immunol Inflamm. 2017; : 1-9
        • Müller M.
        • Ewert I.
        • Hansmann F.
        • et al.
        Detection of Treponema pallidum in the vitreous by PCR.
        Br J Ophthalmol. 2007; 91: 592-595
        • Troutbeck R.
        • Chhabra R.
        • Jones N.P.
        Polymerase chain reaction testing of vitreous in atypical ocular syphilis.
        Ocul Immunol Inflamm. 2013; 21: 227-230
        • Chu K.M.
        • Rathinam R.
        • Namperumalsamy P.
        • et al.
        Identification of Leptospira species in the pathogenesis of uveitis and determination of clinical ocular characteristics in south India.
        J Infect Dis. 1998; 177: 1314-1321
        • Rathinam S.R.
        Ocular manifestations of leptospirosis.
        J Postgrad Med. 2005; 51: 189-194
        • Garweg J.G.
        • De Groot-Mijnes J.D.F.
        • Montoya J.G.
        Diagnostic approach to ocular toxoplasmosis.
        Ocul Immunol Inflamm. 2011; 19: 255-261
        • Bou G.
        • Figueroa M.S.
        • Martí-Belda P.
        • et al.
        Value of PCR for detection of Toxoplasma gondii in aqueous humor and blood samples from immunocompetent patients with ocular toxoplasmosis.
        J Clin Microbiol. 1999; 37 (Available at:): 3465-3468
        • Scheepers M.A.
        • Lecuona K.A.
        • Rogers G.
        • et al.
        The value of routine polymerase chain reaction analysis of intraocular fluid specimens in the diagnosis of infectious posterior Uveitis.
        Scientific WorldJournal. 2013; 2013: 545149
        • Chronopoulos A.
        • Roquelaure D.
        • Souteyrand G.
        • et al.
        Aqueous humor polymerase chain reaction in uveitis – utility and safety.
        BMC Ophthalmol. 2016; 16: 189
        • Montoya J.G.
        • Parmley S.
        • Liesenfeld O.
        • et al.
        Use of the polymerase chain reaction for diagnosis of ocular toxoplasmosis.
        Ophthalmology. 1999; 106: 1554-1563
        • Bourdin C.
        • Busse A.
        • Kouamou E.
        • et al.
        PCR-based detection of Toxoplasma gondii DNA in blood and ocular samples for diagnosis of ocular toxoplasmosis.
        J Clin Microbiol. 2014; 52: 3987-3991
        • Talabani H.
        • Asseraf M.
        • Yera H.
        • et al.
        Contributions of immunoblotting, real-time PCR, and the Goldmann-Witmer coefficient to diagnosis of atypical toxoplasmic retinochoroiditis.
        J Clin Microbiol. 2009; 47: 2131-2135
        • Chan C.-C.
        • Rubenstein J.L.
        • Coupland S.E.
        • et al.
        Primary vitreoretinal lymphoma: a report from an International Primary Central Nervous System Lymphoma Collaborative Group symposium.
        Oncologist. 2011; 16: 1589-1599
        • Chan C.
        • Gonzalez J.
        Primary intraocular lymphoma.
        World Scientific Publishing Co. Pte. Ltd, Singapore2007
        • Coupland S.E.
        • Damato B.
        Understanding intraocular lymphomas.
        Clin Exp Ophthalmol. 2008; 36: 564-578
        • Bhat P.V.
        • Jakobiec F.A.
        • Papaliodis G.
        • et al.
        Primary T-cell lymphoma of the retina and cerebellum: immunophenotypic and gene rearrangement confirmation.
        Am J Ophthalmol. 2009; 148: 350-360
        • Cummings T.J.
        • Stenzel T.T.
        • Klintworth G.
        • et al.
        Primary intraocular T-cell-rich large B-cell lymphoma.
        Arch Pathol Lab Med. 2005; 129: 1050-1053
        • Coupland S.E.
        • Anastassiou G.
        • Bornfeld N.
        • et al.
        Primary intraocular lymphoma of T-cell type: Report of a case and review of the literature.
        Graefes Arch Clin Exp Ophthalmol. 2005; 243: 189-197
        • Coupland S.
        • Foss H.
        • Hidayat A.
        • et al.
        Extranodal marginal zone B cell lymphomas of the uvea: an analysis of 13 cases.
        J Pathol. 2002; 197: 333-340
        • Davis J.L.
        Intraocular lymphoma: a clinical perspective.
        Eye (Lond). 2013; 27: 153-162
        • Cassoux N.
        • Giron A.
        • Bodaghi B.
        • et al.
        IL-10 measurement in aqueous humor for screening patients with suspicion of primary intraocular lymphoma.
        Investig Ophthalmol Vis Sci. 2007; 48: 3253-3259
        • Evans P.A.S.
        • Pott C.
        • Groenen P.J.T.A.
        • et al.
        Significantly improved PCR-based clonality testing in B-cell malignancies by use of multiple immunoglobulin gene targets. Report of the BIOMED-2 concerted action BHM4-CT98-3936.
        Leukemia. 2007; 21: 207-214
        • Baehring J.M.
        • Androudi S.
        • Longtine J.J.
        • et al.
        Analysis of clonal immunoglobulin heavy chain rearrangements in ocular lymphoma.
        Cancer. 2005; 104: 591-597
        • Pascual V.
        • Capra J.D.
        Human immunoglobulin heavy-chain variable region genes: organization, polymorphism, and expression.
        Adv Immunol. 1991; 49: 1-74
        • Korsmeyer S.J.
        • Hieter P.A.
        • Ravetch J.V.
        • et al.
        Developmental hierarchy of immunoglobulin gene rearrangements in human leukemic pre-B-cells.
        Proc Natl Acad Sci U S A. 1981; 78: 7096-7100
        • Cossman J.
        • Uppenkamp J.
        • Sundeen J.
        • et al.
        Molecular genetics and the diagnosis of lymphoma.
        Arch Pathol Lab Med. 1988; 112: 117-127
        • Segal G.H.
        • Jorgensen T.
        • Masih A.S.
        • et al.
        Optimal primer selection for clonality assessment by polymerase chain reaction analysis: I. Low grade B-cell lymphoproliferative disorders of nonfollicular center cell type.
        Hum Pathol. 1994; 25: 1269-1275
        • Abdel-Raheim F.
        • Edwards E.
        • Arber D.
        Utility of a rapid polymerase chain reaction panel for the detection of molecular changes in B-cell lymphoma.
        Arch Pathol Lab Med. 1996; 120: 357-363
        • Seriu T.
        • Hansen-Hagge T.
        • Stark Y.
        • et al.
        Immunoglobulin κ gene rearrangements between the k deleting element and J κ recombination signal sequences in acute lymphoblastic leukemia and normal hematopoiesis.
        Leukemia. 2000; 14: 671-674
        • de Villartay J.-P.
        • Hockett R.
        • Coran D.
        • et al.
        Deletion of the human T-cell receptor δ -gene by a site-specific recombination.
        Nature. 1988; 335: 170-174
        • de Villartay J.-P.
        • Pullman A.
        • Andrade R.
        • et al.
        γ/δ lineage relationship within a consecutive series of human precursor T-cell neoplasms.
        Blood. 1989; 74: 2508-2518
        • Zemlin M.
        • Hummel M.
        • Anagnostopoulos I.
        • et al.
        Improved polymerase chain reaction detection of clonally rearranged T-cell receptor β chain genes.
        Diagn Mol Pathol. 1998; 7: 138-145
        • Theodorou J.
        • Bigorgne C.
        • Delfau M.-H.
        • et al.
        VJ rearrangements of the TCR γ locus in peripheral T-cell lymphomas: analysis by polymerase chain reaction and denaturing gradient gel electrophoresis.
        J Pathol. 1996; 178: 303-310
        • Welch H.M.
        The polymerase chain reaction.
        Methods Mol Biol. 2012; 878: 71-88
        • De Groot-Mijnes J.D.F.
        • De Visser L.
        • Zuurveen S.
        • et al.
        Identification of new pathogens in the intraocular fluid of patients with uveitis.
        Am J Ophthalmol. 2010; 150: 628-636
        • Ongkosuwito J.V.
        • Van Der Lelij A.
        • Bruinenberg M.
        • et al.
        Increased presence of Epstein-Barr virus DNA in ocular fluid samples from HIV negative immunocompromised patients with uveitis.
        Br J Ophthalmol. 1998; 82: 245-251
        • Matos K.
        • Muccioli C.
        • Belfort Junior R.
        • et al.
        Correlation between clinical diagnosis and PCR analysis of serum, aqueous, and vitreous samples in patients with inflammatory eye disease.
        Arq Bras Oftalmol. 2007; 70: 109-114
        • Lee A.Y.
        • Akileswaran L.
        • Tibbetts M.D.
        • et al.
        Identification of torque teno virus in culture-negative endophthalmitis by representational deep DNA sequencing.
        Ophthalmology. 2015; 122: 524-530
        • Tripathy S.
        • Jiang R.Y.
        Massively parallel sequencing technology in pathogenic microbes. In: plant fungal pathogens.
        Methods Mol Biol. 2012; 835: 271-294
        • Gui J.
        • Patel I.R.
        Recent advances in molecular technologies and their application in pathogen detection in foods with particular reference to yersinia.
        J Pathog. 2011; 2011: 310135