Advertisement
Review Article| Volume 3, ISSUE 1, P303-314, August 2018

Download started.

Ok

Femtosecond Laser-Assisted Keratoplasty

      The femtosecond laser has the ability to create a wide variety of corneal trephination patterns, designed to align donor and host tissue in a lock-and-key fashion and improve wound stability.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Ophthalmology and Optometry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Zirm E.
        Eine erfolgreiche totale Keratoplastik (a successful total keratoplasty).
        Albrecht Von Graefes Arch Ophthalmol. 1906; 64: 580-593
        • Barraquer J.
        Two level keratoplasty.
        Int Ophthalmol Clin. 1963; 3: 515-539
        • Busin M.
        A new lamellar wound configuration for penetrating keratoplasty surgery.
        Arch Ophthalmol. 2003; 121: 260-265
        • Busin M.
        • Arffa R.C.
        Microkeratome-assisted mushroom keratoplasty with minimal endothelial replacement.
        Am J Ophthalmol. 2005; 140: 138-140
        • Castroviejo R.
        Keratoplasty: an historical and experimental study, including a new method part I.
        Am J Ophthalmol. 1932; 15: 825-838
        • Castroviejo R.
        Keratoplasty: an historical and experimental study, including a new method, part II.
        Am J Ophthalmol. 1932; 15: 905-916
        • Langenbucher A.
        • Seitz B.
        • Kus M.M.
        • et al.
        Graft decentration in penetrating keratoplasty: nonmechanical trephination with the excimer laser (193 nm) versus the motor trephine.
        Ophthalmic Surg Lasers. 1998; 29: 106-113
        • Seitz B.
        • Langenbucher A.
        • Naumann G.O.
        Perspectives of excimer laser-assisted keratoplasty.
        Ophthalmologe. 2011; 108 ([in German]): 817-824
        • Naumann G.O.
        • Seitz B.
        • Lang G.
        • et al.
        193 excimer laser trepanation in perforating keratoplasty. Report of 70 patients.
        Klin Monbl Augenheilkd. 1993; 203 ([in German]): 252-261
        • Lang G.K.
        • Schroeder E.
        • Koch J.W.
        • et al.
        Excimer laser keratoplasty. Part 1: basic concepts.
        Ophthalmic Surg. 1989; 20: 262-267
        • Seitz B.
        • Langenbucher A.
        • Kus M.M.
        • et al.
        Nonmechanical corneal trephination with the excimer laser improves outcome after penetrating keratoplasty.
        Ophthalmology. 1999; 106: 1156-1165
        • Szentmáry N.
        • Langenbucher A.
        • Naumann G.O.
        • et al.
        Intra-individual variability of penetrating keratoplasty outcome after excimer laser versus motorized corneal trephination.
        J Refract Surg. 2006; 22: 804-810
        • Holzer M.P.
        • Rabsilber T.M.
        • Auffarth G.U.
        Penetrating keratoplasty using femtosecond laser.
        Am J Ophthalmol. 2007; 143: 524-526
        • Buratto L.
        • Böhm E.
        The use of the femtosecond laser in penetrating keratoplasty.
        Am J Ophthalmol. 2007; 143: 737-742
        • Steinert R.F.
        • Ignacio T.S.
        • Sarayba M.A.
        "Top hat"-shaped penetrating keratoplasty using the femtosecond laser.
        Am J Ophthalmol. 2007; 143: 689-691
        • Slade S.G.
        Applications for the femtosecond laser in corneal surgery.
        Curr Opin Ophthalmol. 2007; 18: 338-341
        • Marino G.K.
        • Santhiago M.R.
        • Wilson S.E.
        Femtosecond lasers and corneal surgical procedures.
        Asia Pac J Ophthalmol (Phila). 2017; 6: 456-464
        • Behrens A.
        • Seitz B.
        • Küchle M.
        • et al.
        “Orientation teeth” in non-mechanical laser corneal trephination for penetrating keratoplasty: 2.94 micron Er:YAG v 193 nm ArF excimer laser.
        Br J Ophthalmol. 1999; 83: 1008-1012
        • Rush S.W.
        • Fraunfelder F.W.
        • Mathers W.D.
        • et al.
        Femtosecond laser-assisted keratoplasty in failed penetrating keratoplasty and globe trauma.
        Cornea. 2011; 30: 1358-1362
        • Sarayba M.A.
        • Juhasz T.
        • Chuck R.S.
        • et al.
        Femtosecond laser posterior lamellar keratoplasty: a laboratory model.
        Cornea. 2005; 24: 328-333
        • Soong H.K.
        • Mian S.
        • Abbasi O.
        • et al.
        Femtosecond laser-assisted posterior lamellar keratoplasty: initial studies of surgical technique in eye bank eyes.
        Ophthalmology. 2005; 112: 44-49
        • Mian S.I.
        • Soong H.K.
        • Patel S.V.
        • et al.
        In vivo femtosecond laser-assisted posterior lamellar keratoplasty in rabbits.
        Cornea. 2006; 25: 1205-1209
        • Seitz B.
        • Langenbucher A.
        • Hofmann-Rummelt C.
        • et al.
        Nonmechanical posterior lamellar keratoplasty using the femtosecond laser (femto-plak) for corneal endothelial decompensation.
        Am J Ophthalmol. 2003; 136: 769-772
        • Seitz B.
        • Brunner H.
        • Viestenz A.
        • et al.
        Inverse mushroom-shaped nonmechanical penetrating keratoplasty using a femtosecond laser.
        Am J Ophthalmol. 2005; 139: 941-944
        • Ignacio T.S.
        • Nguyen T.B.
        • Chuck R.S.
        • et al.
        Top-hat wound configuration for penetrating keratoplasty using the femtosecond laser: a laboratory model.
        Cornea. 2006; 25: 336-340
        • Bahar I.
        • Kaiserman I.
        • McAllum P.
        • et al.
        Femtosecond laser-assisted penetrating keratoplasty: stability evaluation of different wound configurations.
        Cornea. 2008; 27: 209-211
        • Farid M.
        • Kim M.
        • Steinert R.F.
        Results of penetrating keratoplasty performed with a femtosecond laser zigzag incision: initial report.
        Ophthalmology. 2007; 114: 2208-2212
        • Espandar L.
        • Mandell J.B.
        • Niknam S.
        Femtosecond laser-assisted decagonal deep anterior lamellar keratoplasty.
        Can J Ophthalmol. 2016; 51: 67-70
        • Lee J.
        • Winokur J.
        • Hallak J.
        • et al.
        Femtosecond dovetail penetrating keratoplasty: surgical technique and case report.
        Br J Ophthalmol. 2009; 93: 861-863
        • Birnbaum F.
        • Wiggermann A.
        • Maier P.C.
        • et al.
        Clinical results of 123 femtosecond laser-assisted penetrating keratoplasties.
        Graefes Arch Clin Exp Ophthalmol. 2013; 251: 95-103
        • Cheng Y.Y.
        • Tahzib N.G.
        • van Rij G.
        • et al.
        Femtosecond laser-assisted inverted mushroom keratoplasty.
        Cornea. 2008; 27: 679-685
        • Daniel M.C.
        • Böhringer D.
        • Maier P.
        • et al.
        Comparison of long-term outcomes of femtosecond laser-assisted keratoplasty with conventional keratoplasty.
        Cornea. 2016; 35: 293-298
        • Lee H.P.
        • Zhuang H.
        Biomechanical study on the edge shapes for penetrating keratoplasty.
        Comput Methods Biomech Biomed Engin. 2012; 15: 1071-1079
        • Gaster R.N.
        • Dumitrascu O.
        • Rabinowitz Y.S.
        Penetrating keratoplasty using femtosecond laser-enabled keratoplasty with zig-zag incisions versus a mechanical trephine in patients with keratoconus.
        Br J Ophthalmol. 2012; 96: 1195-1199
        • Farid M.
        • Steinert R.F.
        • Gaster R.N.
        • et al.
        Comparison of penetrating keratoplasty performed with a femtosecond laser zig-zag incision versus conventional blade trephination.
        Ophthalmology. 2009; 116: 1638-1643
        • Bahar I.
        • Kaiserman I.
        • Lange A.P.
        • et al.
        Femtosecond laser versus manual dissection for top-hat penetrating keratoplasty.
        Br J Ophthalmol. 2009; 93: 73-78
        • Chamberlain W.D.
        • Rush S.W.
        • Mathers W.D.
        • et al.
        Comparison of femtosecond laser-assisted keratoplasty versus conventional penetrating keratoplasty.
        Ophthalmology. 2011; 118: 486-491
        • Price Jr., F.W.
        • Price M.O.
        Femtosecond laser shaped penetrating keratoplasty: one-year results utilizing a top-hat configuration.
        Am J Ophthalmol. 2008; 145: 210-214
        • El-Husseiny M.
        • Seitz B.
        • Langenbucher A.
        • et al.
        Excimer vs. femtosecond laser assisted penetrating keratoplasty in keratoconus and Fuchs dystrophy: intraoperative pitfalls.
        J Ophthalmol. 2015; 2015: 645830
        • Rycroft B.W.
        • Romanes G.J.
        Lamellar corneal grafts clinical report on 62 cases.
        Br J Ophthalmol. 1952; 36: 337-351
        • Sarayba M.A.
        • Ignacio T.S.
        • Binder P.S.
        • et al.
        Comparative study of stromal bed quality by using mechanical, IntraLase femtosecond laser 15- and 30-kHz microkeratomes.
        Cornea. 2007; 26: 446-451
        • Blériot A.
        • Martin E.
        • Lebranchu P.
        • et al.
        Comparison of 12-month anatomic and functional results between Z6 femtosecond laser-assisted and manual trephination in deep anterior lamellar keratoplasty for advanced keratoconus.
        J Fr Ophtalmol. 2017; 40: e193-e200
        • Alio J.L.
        • Abdelghany A.A.
        • Barraquer R.
        • et al.
        Femtosecond laser assisted deep anterior lamellar keratoplasty outcomes and healing patterns compared to manual technique.
        Biomed Res Int. 2015; 2015: 397891
        • Zhang C.
        • Bald M.
        • Tang M.
        • et al.
        Interface quality of different corneal lamellar-cut depths for femtosecond laser-assisted lamellar anterior keratoplasty.
        J Cataract Refract Surg. 2015; 41: 827-835
        • Shehadeh-Mashor R.
        • Chan C.C.
        • Bahar I.
        • et al.
        Comparison between femtosecond laser mushroom configuration and manual trephine straight-edge configuration deep anterior lamellar keratoplasty.
        Br J Ophthalmol. 2014; 98: 35-39
        • Heinzelmann S.
        • Maier P.
        • Böhringer D.
        • et al.
        Visual outcome and histological findings following femtosecond laser-assisted versus microkeratome-assisted DSAEK.
        Graefes Arch Clin Exp Ophthalmol. 2013; 251: 1979-1985
        • Tomida D.
        • Yamaguchi T.
        • Ogawa A.
        • et al.
        Effects of corneal irregular astigmatism on visual acuity after conventional and femtosecond laser-assisted Descemet's stripping automated endothelial keratoplasty.
        Jpn J Ophthalmol. 2015; 59: 216-222
        • Cheng Y.Y.
        • Schouten J.S.
        • Tahzib N.G.
        • et al.
        Efficacy and safety of femtosecond laser-assisted corneal endothelial keratoplasty: a randomized multicenter clinical trial.
        Transplantation. 2009; 88: 1294-1302
        • Jones Y.J.
        • Goins K.M.
        • Sutphin J.E.
        • et al.
        Comparison of the femtosecond laser (IntraLase) versus manual microkeratome (Moria ALTK) in dissection of the donor in endothelial keratoplasty: initial study in eye bank eyes.
        Cornea. 2008; 27: 88-93
        • Cheng Y.Y.
        • Hendrikse F.
        • Pels E.
        • et al.
        Preliminary results of femtosecond laser-assisted Descemet stripping endothelial keratoplasty.
        Arch Ophthalmol. 2008; 126: 1351-1356
        • Guindolet D.T.
        • Nguyen D.
        • Bergin C.
        • et al.
        Double-docking technique for femtosecond laser-assisted deep anterior lamellar keratoplasty.
        Cornea. 2018; 37: 123-126
        • Shin S.
        • Bae J.K.
        • Ahn Y.
        • et al.
        Lamellar keratoplasty using position-guided surgical needle and M-mode optical coherence tomography.
        J Biomed Opt. 2017; 22: 1-7
        • Diakonis V.F.
        • Yoo S.H.
        • Hernandez V.
        • et al.
        Femtosecond-assisted big bubble: a feasibility study.
        Cornea. 2016; 35: 1668-1671
        • Pilger D.
        • von Sonnleithner C.
        • Bertelmann E.
        • et al.
        Femtosecond laser-assisted descemetorhexis: a novel technique in Descemet membrane endothelial keratoplasty. cornea.
        2016;35. 2016; 35: 1274-1278
        • Einan-Lifshitz A.
        • Sorkin N.
        • Boutin T.
        • et al.
        Comparison of femtosecond laser-enabled descemetorhexis and manual descemetorhexis in Descemet membrane endothelial keratoplasty.
        Cornea. 2017; 36: 767-770
        • Jardine G.J.
        • Holiman J.D.
        • Galloway J.D.
        • et al.
        Eye bank-prepared femtosecond laser-assisted automated Descemet membrane endothelial grafts.
        Cornea. 2015; 34: 838-843