Advertisement
Review Article| Volume 3, ISSUE 1, P185-203, August 2018

Download started.

Ok

Advances in Retinal Imaging

      Over the last few decades, retinal imaging has become an essential component of clinical evaluation, and the field of retinal imaging continues to enjoy rapid advancement.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Ophthalmology and Optometry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mainster M.A.
        • Timberlake G.T.
        • Webb R.H.
        • et al.
        Scanning laser ophthalmoscopy. Clinical applications.
        Ophthalmology. 1982; 89: 852-857
        • Puliafito C.A.
        • Hee M.R.
        • Lin C.P.
        • et al.
        Imaging of macular diseases with optical coherence tomography.
        Ophthalmology. 1995; 102: 217-229
        • Keane P.A.
        • Sadda S.R.
        Retinal imaging in the twenty-first century: state of the art and future directions.
        Ophthalmology. 2014; 121: 2489-2500
        • Zhang Y.
        • Roorda A.
        Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope.
        J Biomed Opt. 2006; 11: 014002
        • Lombardo M.
        • Lombardo G.
        • Ducoli P.
        • et al.
        Adaptive optics photoreceptor imaging.
        Ophthalmology. 2012; 119: 1498-1498.e2
        • Alpern M.
        • Ching C.C.
        • Kitahara K.
        The directional sensitivity of retinal rods.
        J Physiol. 1983; 343: 577-592
        • Genead M.A.
        • Fishman G.A.
        • Rha J.
        • et al.
        Photoreceptor structure and function in patients with congenital achromatopsia.
        Invest Ophthalmol Vis Sci. 2011; 52: 7298-7308
        • Battu R.
        • Dabir S.
        • Khanna A.
        • et al.
        Adaptive optics imaging of the retina.
        Indian J Ophthalmol. 2014; 62: 60-65
        • Delori F.
        • Greenberg J.P.
        • Woods R.L.
        • et al.
        Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope.
        Invest Ophthalmol Vis Sci. 2011; 52: 9379-9390
        • Greenberg J.P.
        • Duncker T.
        • Woods R.L.
        • et al.
        Quantitative fundus autofluorescence in healthy eyes.
        Invest Ophthalmol Vis Sci. 2013; 54: 5684-5693
        • Burke T.R.
        • Duncker T.
        • Woods R.L.
        • et al.
        Quantitative fundus autofluorescence in recessive Stargardt disease.
        Invest Ophthalmol Vis Sci. 2014; 55: 2841-2852
        • Duncker T.
        • Tsang S.H.
        • Lee W.
        • et al.
        Quantitative fundus autofluorescence distinguishes ABCA4-associated and non-ABCA4-associated bull's-eye maculopathy.
        Ophthalmology. 2015; 122: 345-355
        • Gliem M.
        • Müller P.L.
        • Finger R.P.
        • et al.
        Quantitative fundus autofluorescence in early and intermediate age-related macular degeneration.
        JAMA Ophthalmol. 2016; 134: 817-824
        • Pomerantzeff O.
        Equator-plus camera.
        Invest Ophthalmol. 1975; 14: 401-406
        • Wessel M.M.
        • Aaker G.D.
        • Parlitsis G.
        • et al.
        Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy.
        Retina. 2012; 32: 785-791
        • Reddy S.
        • Hu A.
        • Schwartz S.D.
        Ultra wide field fluorescein angiography guided targeted retinal photocoagulation (TRP).
        Semin Ophthalmol. 2009; 24: 9-14
        • Prasad P.S.
        • Oliver S.C.
        • Coffee R.E.
        • et al.
        Ultra wide-field angiographic characteristics of branch retinal and hemicentral retinal vein occlusion.
        Ophthalmology. 2010; 117: 780-784
        • Reeves G.M.
        • Kumar N.
        • Beare N.A.
        • et al.
        Use of Staurenghi lens angiography in the management of posterior uveitis.
        Acta Ophthalmol. 2013; 91: 48-51
        • Kaines A.
        • Tsui I.
        • Sarraf D.
        • et al.
        The use of ultra wide field fluorescein angiography in evaluation and management of uveitis.
        Semin Ophthalmol. 2009; 24: 19-24
        • Coffee R.E.
        • Jain A.
        • McCannel T.A.
        Ultra wide–field imaging of choroidal metastasis secondary to primary breast cancer.
        Semin Ophthalmol. 2009; 24: 34-36
        • Bonnay G.
        • Nguyen F.
        • Meunier I.
        • et al.
        Screening for retinal detachment using wide–field retinal imaging.
        J Fr Ophtalmol. 2011; 34: 482-485
        • Dai S.
        • Chow K.
        • Vincent A.
        Efficacy of wide-field digital retinal imaging for retinopathy of prematurity screening.
        Clin Exp Ophthalmol. 2011; 39: 23-29
      1. Heidelberg, Spectralis OCT2 Module Technical Specifications. Available at: https://business-lounge.heidelbergengineering.com/gb/en/products/spectralis/spectralis-oct2-module/. Accessed May 27, 2018.

      2. Topcon, DRI OCT Triton Swept Source OCT Technical Specifications. Available at: http://www.topcon-medical.eu/eu/products/382-dri-oct-triton-swept-source-oct.html. Accessed May 27, 2018.

        • Itakura H.
        • Kishi S.
        • Li D.
        • et al.
        Observation of posterior precortical vitreous pocket using swept-source optical coherence tomography.
        Invest Ophthalmol Vis Sci. 2013; 54: 3102-3107
        • Wakatsuki Y.
        • Shinojima A.
        • Kawamura A.
        • et al.
        Correlation of aging and segmental choroidal thickness measurement using swept source optical coherence tomography in healthy eyes.
        PLoS One. 2015; 10: e0144156
        • De Bats F.
        • Wolff B.
        • Vasseur V.
        • et al.
        "En-face" spectral-domain optical coherence tomography findings in multiple evanescent white dot syndrome.
        J Ophthalmol. 2014; 2014: 928028
        • Nunes R.P.
        • Gregori G.
        • Yehoshua Z.
        • et al.
        Predicting the progression of geographic atrophy in age-related macular degeneration with SD-OCT en face imaging of the outer retina.
        Ophthalmic Surg Lasers Imaging Retina. 2013; 44: 344-359
        • Wolff B.
        • Matet A.
        • Vasseur V.
        • et al.
        En face OCT imaging for the diagnosis of outer retinal tubulations in age-related macular degeneration.
        J Ophthalmol. 2012; 2012: 542417
        • Kameda T.
        • Tsujikawa A.
        • Otani A.
        • et al.
        Polypoidal choroidal vasculopathy examined with en face optical coherence tomography.
        Clin Exp Ophthalmol. 2007; 35: 596-601
        • Palejwala N.V.
        • Jia Y.
        • Gao S.S.
        • et al.
        Detection of nonexudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography.
        Retina. 2015; 35: 2204-2211
        • Matsunaga D.R.
        • Yi J.J.
        • De Koo L.O.
        • et al.
        Optical coherence tomography angiography of diabetic retinopathy in human subjects.
        Ophthalmic Surg Lasers Imaging Retina. 2015; 46: 796-805
        • Dayani P.N.
        • Maldonado R.
        • Farsiu S.
        • et al.
        Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery.
        Retina. 2009; 29: 1457-1468
        • Ehlers J.P.
        • Dupps W.J.
        • Kaiser P.K.
        • et al.
        The prospective intraoperative and perioperative ophthalmic ImagiNg with Optical CoherEncE TomogRaphy (PIONEER) Study: 2-year results.
        Am J Ophthalmol. 2014; 158: 999-1007
        • Asami T.
        • Terasaki H.
        • Ito Y.
        • et al.
        Development of a fiber-optic optical coherence tomography probe for intraocular use.
        Invest Ophthalmol Vis Sci. 2016; 57: OCT568-OCT574
        • Ehlers J.P.
        • Goshe J.
        • Dupps W.J.
        • et al.
        Determination of feasibility and utility of microscope-integrated optical coherence tomography during ophthalmic surgery: the DISCOVER Study RESCAN Results.
        JAMA Ophthalmol. 2015; 133: 1124-1132
        • Todorich B.
        • Shieh C.
        • DeSouza P.J.
        • et al.
        Impact of microscope-integrated OCT on ophthalmology resident performance of anterior segment surgical maneuvers in model eyes.
        Invest Ophthalmol Vis Sci. 2016; 57: OCT146-OCT153