Advertisement
Review Article| Volume 3, ISSUE 1, P155-183, August 2018

Download started.

Ok

Recent Innovations in Drug Delivery for Retinal Diseases

      Diseases of the retina are among the leading causes of irreversible blindness.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Ophthalmology and Optometry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bourne R.R.
        • Flaxman S.R.
        • Braithwaite T.
        • et al.
        Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis.
        Lancet Glob Health. 2017; 5: e888-e897
        • Pascolini D.
        • Mariotti S.P.
        Global estimates of visual impairment: 2010.
        Br J Ophthalmol. 2012; 96: 614-618
        • Melnikova I.
        Wet age-related macular degeneration.
        Nat Rev Drug Discov. 2005; 4: 711-712
        • Lanzetta P.
        • Loewenstein A.
        • Vision Academy Steering Committee
        Fundamental principles of an anti-VEGF treatment regimen: optimal application of intravitreal anti-vascular endothelial growth factor therapy of macular diseases.
        Graefes Arch Clin Exp Ophthalmol. 2017; 255: 1259-1273
        • Jager R.D.
        • Aiello L.P.
        • Patel S.C.
        • et al.
        Risks of intravitreous injection: a comprehensive review.
        Retina. 2004; 24: 676-698
        • Janagam D.R.
        • Wu L.
        • Lowe T.L.
        Nanoparticles for drug delivery to the anterior segment of the eye.
        Adv Drug Deliv Rev. 2017; 122: 31-64
        • Kaji H.
        • Nagai N.
        • Nishizawa M.
        • et al.
        Drug delivery devices for retinal diseases.
        Adv Drug Deliv Rev. 2017; ([pii:S0169-409X(17)30099-6])
        • Kang-Mieler J.J.
        • Osswald C.R.
        • Mieler W.F.
        Advances in ocular drug delivery: emphasis on the posterior segment.
        Expert Opin Drug Deliv. 2014; 11: 1647-1660
        • Maurice D.M.
        Drug delivery to the posterior segment from drops.
        Surv Ophthalmol. 2002; 47: S41-S52
        • Tanner V.
        • Kanski J.J.
        • Frith P.A.
        Posterior sub-Tenon’s triamcinolone injections in the treatment of uveitis.
        Eye. 1998; 12: 679-685
        • Choudhry S.
        • Ghosh S.
        Intravitreal and posterior subtenon triamcinolone acetonide in idiopathic bilateral uveitic macular oedema.
        Clin Exp Ophthalmol. 2007; 35: 713-718
        • Raghava S.
        • Hammond M.
        • Kompella U.B.
        Periocular routes for retinal drug delivery.
        Expert Opin Drug Deliv. 2004; 1: 99-114
        • Edelhauser H.F.
        • Rowe-Rendleman C.L.
        • Robinson M.R.
        • et al.
        Ophthalmic drug delivery systems for the treatment of retinal diseases: basic research to clinical applications.
        Invest Ophthalmol Vis Sci. 2010; 51: 5403-5420
        • Ghate D.
        • Brooks W.
        • McCarey B.E.
        • et al.
        Pharmacokinetics of intraocular drug delivery by periocular injections using ocular fluorophotometry.
        Invest Ophthalmol Vis Sci. 2007; 48: 2230-2237
        • Awwad S.
        • Ahmed M.
        • Abeer H.A.
        • et al.
        Principles of pharmacology in the eye.
        Br J Pharmacol. 2017; 174: 4205-4223
        • Flammer J.
        • Konieczka K.
        • Bruno R.M.
        • et al.
        The eye and the heart.
        Eur Heart J. 2013; 34: 1270-1278
        • Pitkänen L.
        • Ranta V.P.
        • Moilanen H.
        • et al.
        Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity.
        Invest Ophthalmol Vis Sci. 2005; 46: 641-646
        • Pitkänen L.
        • Ranta V.P.
        • Moilanen H.
        • et al.
        Binding of betaxolol, metoprolol and oligonucleotides to synthetic and bovine ocular melanin, and prediction of drug binding to melanin in human choroid-retinal pigment epithelium.
        Pharm Res. 2007; 24: 2063-2070
        • Gilger B.C.
        • Wilkie D.A.
        • Clode A.B.
        Long-term outcome after implantation of a suprachoroidal cyclosporine drug delivery device in horses with recurrent uveitis.
        Vet Ophthalmol. 2010; 13: 294-300
        • Gilger B.C.
        • Abarca E.M.
        • Salmon J.H.
        • et al.
        Treatment of acute posterior uveitis in a porcine model by injection of triamcinolone acetonide into the suprachoroidal space using microneedles.
        Invest Ophthalmol Vis Sci. 2013; 54: 2483-2492
        • Amado D.
        • Mingozzi F.
        • Hui D.
        • et al.
        Safety and efficacy of subretinal readministration of a viral vector in large animals to treat congenital blindness.
        Sci Transl Med. 2010; 2: 21ra16
        • Li W.
        • Kong F.
        • Li X.
        • et al.
        Gene therapy following subretinal AAV5 vector delivery is not affected by a previous intravitreal AAV5 vector administration in the partner eye.
        Mol Vis. 2009; 15: 267-275
        • Driot J.Y.
        • Novack G.D.
        • Rittenhouse K.D.
        • et al.
        Ocular pharmacokinetics of fluocinolone acetonide after Retisert intravitreal implantation in rabbits over a 1-year period.
        J Ocul Pharmacol Ther. 2004; 20: 269-275
        • Pożarowska D.
        • Pożarowski P.
        The era of anti-vascular endothelial growth factor (VEGF) drugs in ophthalmology, VEGF and anti-VEGF therapy.
        Cent Eur J Immunol. 2016; 41: 311
        • Durairaj C.
        • Shah J.C.
        • Senapati S.
        • et al.
        Prediction of vitreal half-life based on drug physicochemical properties: quantitative structure–pharmacokinetic relationships (QSPKR).
        Pharm Res. 2009; 26: 1236
        • Ozkiris A.
        • Erkilic K.
        Complications of intravitreal injection of triamcinolone acetonide.
        Can J Ophthalmol. 2005; 40: 63-68
        • Shelsta H.N.
        • Jampol L.M.
        Pharmacologic therapy of pseudophakic cystoid macular edema: 2010 update.
        Retina. 2011; 31: 4-12
        • Guo S.
        • Patel S.
        • Baumrind B.
        • et al.
        Management of pseudophakic cystoid macular edema.
        Surv Ophthalmol. 2015; 60: 123-137
        • Grzybowski A.
        • Sikorski B.
        • Ascaso F.
        • et al.
        Pseudophakic cystoid macular edema: update 2016.
        Clin Interv Aging. 2016; 11: 1221-1229
        • Ke T.-L.
        • Graff G.
        • Spellman J.M.
        • et al.
        Nepafenac a unique nonsteroidal prodrug with potential utility in the treatment of trauma-induced ocular inflammation: II. In vitro bioactivation and permeation of external ocular barriers.
        Inflammation. 2000; 24: 371-384
        • Takahashi K.
        • Saishin Y.
        • Saishin Y.
        • et al.
        Topical nepafenac inhibits ocular neovascularization.
        Invest Ophthalmol Vis Sci. 2003; 44 (52): 409-415
        • Asano S.
        • Miyake K.
        • Ota I.
        • et al.
        Reducing angiographic cystoid macular edema and blood-aqueous barrier disruption after small-incision phacoemulsification and foldable intraocular lens implantation: multicenter prospective randomized comparison of topical diclofenac 0.1% and betamethasone 0.1%.
        J Cataract Refract Surg. 2008; 34: 57-63
        • Sigurdsson H.H.
        • Konráðsdóttir F.
        • Loftsson T.
        • et al.
        Topical and systemic absorption in delivery of dexamethasone to the anterior and posterior segments of the eye.
        Acta Ophthalmol Scand. 2007; 85: 598-602
        • Tanito M.
        • Hara K.
        • Takai Y.
        • et al.
        Topical dexamethasone-cyclodextrin microparticle eye drops for diabetic macular edema.
        Invest Ophthalmol Vis Sci. 2011; 52: 7944-7948
        • Doukas J.
        • Mahesh S.
        • Umeda N.
        • et al.
        Topical administration of a multi-targeted kinase inhibitor suppresses choroidal neovascularization and retinal edema.
        J Cell Physiol. 2008; 216 (53): 29-37
        • Kiuchi K.
        • Matsuoka M.
        • Wu J.C.
        • et al.
        Mecamylamine suppresses basal and nicotine-stimulated choroidal neovascularization.
        Invest Ophthalmol Vis Sci. 2008; 49: 1705-1711
        • Thach A.B.
        • Dugel P.U.
        • Flindall R.J.
        • et al.
        A comparison of retrobulbar versus sub-Tenon's corticosteroid therapy for cystoid macular edema refractory to topical medications.
        Ophthalmology. 1997; 104: 2003-2008
        • Martin D.F.
        • Maguire M.G.
        • Ying G.S.
        • et al.
        • CATT Research Group
        Ranibizumab and bevacizumab for neovascular age-related macular degeneration.
        N Engl J Med. 2011; 364: 1897-1908
        • Lalwani G.A.
        • Rosenfeld P.J.
        • Fung A.E.
        • et al.
        A variable-dosing regimen with intravitreal ranibizumab for neovascular age-related macular degeneration: year 2 of the PrONTO Study.
        Am J Ophthalmol. 2009; 148: 43-58.e1
        • Katz G.
        • Giavedoni L.
        • Muni R.
        • et al.
        Effectiveness at 1 year of monthly versus variable-dosing intravitreal ranibizumab in the treatment of choroidal neovascularization secondary to age-related macular degeneration.
        Retina. 2012; 32: 293-298
        • Oubraham H.
        • Cohen S.Y.
        • Samimi S.
        • et al.
        Inject and extend dosing versus dosing as needed: a comparative retrospective study of ranibizumab in exudative age-related macular degeneration.
        Retina. 2011; 31: 26-30
        • Dadgostar H.
        • Ventura A.A.
        • Chung J.Y.
        • et al.
        Evaluation of injection frequency and visual acuity outcomes for ranibizumab monotherapy in exudative age-related macular degeneration.
        Ophthalmology. 2009; 116: 1740-1747
        • Stewart M.W.
        Aflibercept (VEGF Trap-eye): the newest anti-VEGF drug.
        Br J Ophthalmol. 2012; 96: 1157-1158
        • Cochereau-Massin I.
        • Lehoang P.
        • Lautier-Frau M.
        • et al.
        Efficacy and tolerance of intravitreal ganciclovir in cytomegalovirus retinitis in acquired immune deficiency syndrome.
        Ophthalmology. 1991; 98: 1348-1355
        • Matthews T.
        • Boehme R.
        Antiviral activity and mechanism of action of ganciclovir.
        Clin Infect Dis. 1988; 10: S490-S494
        • Velez G.
        • Roy C.E.
        • Whitcup S.M.
        • et al.
        High-dose intravitreal ganciclovir and foscarnet for cytomegalovirus retinitis.
        Am J Ophthalmol. 2001; 131: 396-397
        • Breit S.M.
        • Hariprasad S.M.
        • Mieler W.F.
        • et al.
        Management of endogenous fungal endophthalmitis with voriconazole and caspofungin.
        Am J Ophthalmol. 2005; 139: 135-140
        • Lee S.S.
        • Hughes P.
        • Ross A.D.
        • et al.
        Biodegradable implants for sustained drug release in the eye.
        Pharm Res. 2010; 27: 2043-2053
        • Mantonti F.
        • Pommier S.
        • Meyer F.
        • et al.
        Long-term efficacy and safety of intravitreal dexamethasone implant for the treatment of diabetic macular edema.
        Eur J Ophthalmol. 2016; 26: 454-459
        • Chang-Lin J.
        • Attar M.
        Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant.
        Invest Ophthalmol Vis Sci. 2011; 52: 80-86
        • Sepahvandi A.
        • Eskandari M.
        • Moztarzadeh F.
        Drug delivery systems to the posterior segment of the eye: implants and nanoparticles.
        Bionanoscience. 2016; 6: 276-283
        • Martin D.F.
        • Parks D.J.
        • Mellow S.D.
        • et al.
        Treatment of cytomegalovirus retinitis with an intraocular sustained-release ganciclovir implant.
        Arch Ophthalmol. 1994; 112: 1531
        • Musch D.C.
        • Martin D.F.
        • Gordon J.F.
        • et al.
        Treatment of cytomegalovirus retinitis with a sustained-release ganciclovir implant.
        N Engl J Med. 1997; 337: 83-90
        • Jaffe G.J.
        • Martin D.
        • Callanan D.
        • et al.
        • Fluocinolone Acetonide Uveitis Study Group
        Fluocinolone acetonide implant (Retisert) for noninfectious posterior uveitis: thirty-four-week results of a multicenter randomized clinical study.
        Ophthalmology. 2006; 113: 1020-1027
        • Jaffe G.J.
        • Yang C.H.
        • Guo H.
        • et al.
        Safety and pharmacokinetics of an intraocular fluocinolone acetonide sustained delivery device.
        Invest Ophthalmol Vis Sci. 2000; 41: 3569-3575
        • Callanan D.G.
        • Jaffe G.J.
        • Martin D.F.
        • et al.
        Treatment of posterior uveitis with a fluocinolone acetonide implant: three-year clinical trial results.
        Arch Ophthalmol. 2008; 126: 1191-1201
        • Falavarjani K.G.
        Implantable posterior segment drug delivery devices; novel alternatives to currently available treatments.
        J Ophthalmic Vis Res. 2009; 4: 191-193
        • Syed Y.Y.
        Fluocinolone acetonide intravitreal implant 0.19 mg (ILUVIEN®): a review in diabetic macular edema.
        Drugs. 2017; 77: 575-583
        • Thrimawithana T.R.
        • Young S.
        • Bunt C.R.
        • et al.
        Drug delivery to the posterior segment of the eye.
        Drug Discov Today. 2011; 16: 270-277
      1. Dugel PU, Eliott D, Cantrill HL, et al. I-Vation™ TA: 24-month clinical results of the Phase I safety and preliminary efficacy study. Proceedings of ARVO 2009 Annual Meeting, Fort Lauderdale, FL, May 3–7, 2009. [E-Abstract: 4332].

        • Diabetic Retinopathy Clinical Research Network
        A randomized trial comparing intravitreal triamcinolone acetonide and focal/grid photocoagulation for diabetic macular edema.
        Ophthalmology. 2008; 115 (1449.e1-10): 1447-1449
      2. Lim JI, Hung D, Fung AE, et al. One year results of a phase 1 study evaluating the safety and evidence of efficacy of a single intravitreal injection of the Verisome TM liquid drug delivery system for sustained release of low-dose triamcinolone (IBI-20089) in eyes with cystoid macular edema. In Proceedings of ARVO 2010 Annual Meeting, Fort Lauderdale, FL, May 2–6, 2010. [E-Abstract: 6396].

        • Lim J.I.
        • Fung A.E.
        • Wieland M.
        • et al.
        Sustained release intravitreal liquid drug delivery using triamcinolone acetonide for cystoid macular edema in retinal vein occlusion.
        Ophthalmology. 2011; 118: 1416-1422
        • Lim J.I.
        • Niec M.
        • Wong V.
        One year results of a phase 1 study of the safety and tolerability of combination therapy using sustained release intravitreal triamcinolone acetonide and ranibizumab for subfoveal neovascular AMD.
        Br J Ophthalmol. 2015; 99: 618-623
        • Bernards D.A.
        • Lance K.D.
        • Ciaccio N.A.
        • et al.
        Nanostructured thin film polymer devices for constant-rate protein delivery.
        Nano Lett. 2012; 12: 5355-5361
        • Bernards D.A.
        • Bhisitkuk R.B.
        • Desai T.
        Zero-order sustained drug delivery to the retina from a nanoporous film device.
        Drug Delivery. 2014; 48: 20-21
        • Lance K.D.
        • Bernards D.A.
        • Ciaccio N.A.
        • et al.
        In vivo and in vitro sustained release of ranibizumab from a nanoporous thin-film device.
        Drug Deliv Transl Res. 2016; 6: 771-780
        • Patri A.K.
        • Majoros I.J.
        • Baker J.R.
        Dendritic polymer macromolecular carriers for drug delivery.
        Curr Opin Chem Biol. 2002; 6: 466-471
        • Kaminskas L.M.
        • Boyd B.J.
        • Porter C.J.H.
        Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties.
        Nanomedicine. 2011; 6: 1063-1084
        • Rodríguez Villanueva J.
        • Navarro M.G.
        • Rodríguez Villanueva L.
        Dendrimers as a promising tool in ocular therapeutics: latest advances and perspectives.
        Int J Pharm. 2016; 511: 359-366
        • Yavuz B.
        • Pehlivan S.B.
        • Vural İ.
        • et al.
        In vitro/in vivo evaluation of dexamethasone–PAMAM dendrimer complexes for retinal drug delivery.
        J Pharm Sci. 2015; 104: 3814-3823
        • Marano R.J.
        • Toth I.
        • Wimmer N.
        • et al.
        Dendrimer delivery of an anti-VEGF oligonucleotide into the eye: a long-term study into inhibition of laser-induced CNV, distribution, uptake and toxicity.
        Gene Ther. 2005; 12: 1544-1550
        • Hoare T.R.
        • Kohane D.S.
        Hydrogels in drug delivery: progress and challenges.
        Polymer. 2008; 49: 1993-2007
        • Wang K.
        • Han Z.
        Injectable hydrogels for ophthalmic applications.
        J Control Release. 2017; 268: 212-224
        • Rauck B.M.
        • Friberg T.R.
        • Mendez C.A.M.
        • et al.
        Biocompatible reverse thermal gel sustains the release of intravitreal bevacizumab in vivo.
        Invest Ophthalmol Vis Sci. 2014; 55: 469
        • Yu Y.
        • Lau L.C.M.
        • Lo A.C.-Y.
        • et al.
        Injectable chemically crosslinked hydrogel for the controlled release of bevacizumab in vitreous: a 6-month in vivo study.
        Transl Vis Sci Technol. 2015; 4: 5
        • Li P.-Y.
        • Shih J.
        • Lo R.
        • et al.
        An electrochemical intraocular drug delivery device.
        Sens Actuators A Phys. 2008; 143: 41-48
        • Saati S.
        • Lo R.
        • Li P.Y.
        • et al.
        Mini drug pump for ophthalmic use.
        Curr Eye Res. 2010; 35: 192-201
        • Song P.
        • Kuang S.
        • Panwar N.
        • et al.
        A self-powered implantable drug-delivery system using biokinetic energy.
        Adv Mater. 2017; 29: 1605668
        • Pirmoradi F.N.
        • Jackson J.K.
        • Burt H.M.
        • et al.
        On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device.
        Lab Chip. 2011; 11: 2744-2752
        • Rubio R.G.
        Long-acting anti-VEGF delivery.
        Retina Today. 2014; : 78-80
        • Burnham C.M.
        Encapsulated cell technology could prevent blindness.
        Drug Discov Today. 2003; 8: 146-147
        • Tao W.
        • Wen R.
        • Goddard M.B.
        • et al.
        Encapsulated cell-based delivery of CNTF reduces photoreceptor degeneration in animal models of retinitis pigmentosa.
        Invest Ophthalmol Vis Sci. 2002; 43: 3292-3298
        • Emerich D.F.
        • Winn S.R.
        • Hantraye P.M.
        • et al.
        Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntingtons disease.
        Nature. 1997; 386: 395-399
        • Zhang K.
        • Hopkins J.J.
        • Heier J.S.
        • et al.
        Ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for treatment of geographic atrophy in age-related macular degeneration.
        Proc Natl Acad Sci U S A. 2011; 108: 6241-6245
        • Talcott K.E.
        • Ratnam K.
        • Sundquist S.M.
        • et al.
        Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment.
        Invest Ophthalmol Vis Sci. 2011; 52: 2219-2226
        • Kalia Y.N.
        • Naik A.
        • Garrison J.
        • et al.
        Iontophoretic drug delivery.
        Adv Drug Deliv Rev. 2004; 56: 619-658
        • Huang D.
        • Chen Y.S.
        • Rupenthal I.D.
        Ultrasound-mediated nanoparticle delivery across ex vivo bovine retina after intravitreal injection.
        Eur J Pharm Biopharm. 2017; 119: 125-136
        • Hao J.
        • Li S.K.
        • Liu C.Y.
        • et al.
        Electrically assisted delivery of macromolecules into the corneal epithelium.
        Exp Eye Res. 2009; 89: 934-941
        • Touchard E.
        • Berdugo M.
        • Bigey P.
        • et al.
        Suprachoroidal electrotransfer: a nonviral gene delivery method to transfect the choroid and the retina without detaching the retina.
        Mol Ther. 2012; 20: 1559-1570
        • Cheung A.C.
        • Yu Y.
        • Tay D.
        • et al.
        Ultrasound-enhanced intrascleral delivery of protein.
        Int J Pharm. 2010; 401: 16-24
        • Huang D.
        • Chen Y.S.
        • Rupenthal I.D.
        Overcoming ocular drug delivery barriers through the use of physical forces.
        Adv Drug Deliv Rev. 2017; ([pii:S0169-409X(17)30189-8])
        • Park J.
        • Zhang Y.
        • Vykhodtseva N.
        • et al.
        Targeted and reversible blood-retinal barrier disruption via focused ultrasound and microbubbles.
        PLoS One. 2012; 7: e42754
        • Willoughby A.S.
        • Vuong V.S.
        • Cunefare D.
        • et al.
        Choroidal changes after suprachoroidal injection of triamcinolone acetonide in eyes with macular edema secondary to retinal vein occlusion.
        Am J Ophthalmol. 2018; 186: 144-151
        • Kondo T.
        • Nezhad Z.K.
        • Suzuki J.
        • et al.
        A self-deploying drug release device using polymeric films.
        J Biomed Mater Res B Appl Biomater. 2017; 106: 780-786
        • Delplace V.
        • Payne S.
        • Shoichet M.
        Delivery strategies for treatment of age-related ocular diseases: from a biological understanding to biomaterial solutions.
        J Control Release. 2015; 219: 652-668
        • Liu Z.
        • Yu N.
        • Holz F.G.
        • et al.
        Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography.
        Biomaterials. 2014; 35: 2837-2850