Advertisement
Review Article| Volume 3, ISSUE 1, P61-73, August 2018

Download started.

Ok

Prediction Models for Retinopathy of Prematurity

      Slow postnatal growth is a surrogate measure for low serum insulin-like growth factor 1, which is an important risk factor for severe retinopathy of prematurity.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Ophthalmology and Optometry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kong L.
        • Fry M.
        • Al-Samarraie M.
        • et al.
        An update on progress and the changing epidemiology of causes of childhood blindness worldwide.
        J AAPOS. 2012; 16: 501-507
        • Mintz-Hittner H.A.
        • Kennedy K.A.
        • Chuang A.Z.
        • et al.
        Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity.
        N Engl J Med. 2011; 364: 603-615
        • Early Treatment For Retinopathy Of Prematurity Cooperative Group
        Revised indications for the treatment of retinopathy of prematurity: results of the early treatment for retinopathy of prematurity randomized trial.
        Arch Ophthalmol. 2003; 121: 1684-1694
      1. Screening examination of premature infants for retinopathy of prematurity.
        Pediatrics. 2013; 131: 189-195
        • Martin J.A.
        • Hamilton B.E.
        • Osterman M.J.
        • et al.
        Births: final data for 2015.
        Natl Vital Stat Rep. 2017; 66: 1
        • The natural ocular outcome of premature birth and retinopathy
        Status at 1 year. cryotherapy for retinopathy of prematurity cooperative group.
        Arch Ophthalmol. 1994; 112: 903-912
        • Palmer E.A.
        • Flynn J.T.
        • Hardy R.J.
        • et al.
        Incidence and early course of retinopathy of prematurity. The cryotherapy for retinopathy of prematurity cooperative group.
        Ophthalmology. 1991; 98: 1628-1640
        • Chiang M.F.
        • Arons R.R.
        • Flynn J.T.
        • et al.
        Incidence of retinopathy of prematurity from 1996 to 2000: analysis of a comprehensive New York state patient database.
        Ophthalmology. 2004; 111: 1317-1325
        • Lee S.K.
        • Normand C.
        • McMillan D.
        • et al.
        Evidence for changing guidelines for routine screening for retinopathy of prematurity.
        Arch Pediatr Adolesc Med. 2001; 155: 387-395
        • Haines L.
        • Fielder A.R.
        • Scrivener R.
        • et al.
        Retinopathy of prematurity in the UK I: the organisation of services for screening and treatment.
        Eye (Lond). 2002; 16: 33-38
      2. UK retinopathy of prematurity guideline May 2008. 2008. Available at: http://www.rcophth.ac.uk/core/core_picker/download.asp?id=180&filetitle=UK+Retinopathy+of+Prematurity+Guideline+May+2008. Accessed September 17, 2012.

        • Kemper A.R.
        • Wallace D.K.
        Neonatologists' practices and experiences in arranging retinopathy of prematurity screening services.
        Pediatrics. 2007; 120: 527-531
        • Hutchinson A.K.
        • Melia M.
        • Yang M.B.
        • et al.
        Clinical models and algorithms for the prediction of retinopathy of prematurity: a report by the American Academy of Ophthalmology.
        Ophthalmology. 2016; 123: 804-816
        • Moons K.G.
        • Royston P.
        • Vergouwe Y.
        • et al.
        Prognosis and prognostic research: what, why, and how?.
        BMJ. 2009; 338: 1317-1320
        • Smith L.E.
        • Shen W.
        • Perruzzi C.
        • et al.
        Regulation of vascular endothelial growth factor-dependent retinal neovascularization by insulin-like growth factor-1 receptor.
        Nat Med. 1999; 5: 1390-1395
        • Hellstrom A.
        • Perruzzi C.
        • Ju M.
        • et al.
        Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity.
        Proc Natl Acad Sci U S A. 2001; 98: 5804-5808
        • Pierce E.A.
        • Foley E.D.
        • Smith L.E.
        Regulation of vascular endothelial growth factor by oxygen in a model of retinopathy of prematurity.
        Arch Ophthalmol. 1996; 114: 1219-1228
        • Aiello L.P.
        • Pierce E.A.
        • Foley E.D.
        • et al.
        Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins.
        Proc Natl Acad Sci U S A. 1995; 92: 10457-10461
        • Alon T.
        • Hemo I.
        • Itin A.
        • et al.
        Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity.
        Nat Med. 1995; 1: 1024-1028
        • Pierce E.A.
        • Avery R.L.
        • Foley E.D.
        • et al.
        Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization.
        Proc Natl Acad Sci U S A. 1995; 92: 905-909
        • Robinson G.S.
        • Pierce E.A.
        • Rook S.L.
        • et al.
        Oligodeoxynucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathy.
        Proc Natl Acad Sci U S A. 1996; 93: 4851-4856
        • Shih S.C.
        • Ju M.
        • Liu N.
        • et al.
        Selective stimulation of VEGFR-1 prevents oxygen-induced retinal vascular degeneration in retinopathy of prematurity.
        J Clin Invest. 2003; 112: 50-57
        • Hellstrom A.
        • Hard A.L.
        • Engstrom E.
        • et al.
        Early weight gain predicts retinopathy in preterm infants: new, simple, efficient approach to screening.
        Pediatrics. 2009; 123: e638-e645
        • Hellstrom A.
        • Engstrom E.
        • Hard A.L.
        • et al.
        Postnatal serum insulin-like growth factor I deficiency is associated with retinopathy of prematurity and other complications of premature birth.
        Pediatrics. 2003; 112: 1016-1020
        • Lofqvist C.
        • Andersson E.
        • Sigurdsson J.
        • et al.
        Longitudinal postnatal weight and insulin-like growth factor I measurements in the prediction of retinopathy of prematurity.
        Arch Ophthalmol. 2006; 124: 1711-1718
        • Lofqvist C.
        • Hansen-Pupp I.
        • Andersson E.
        • et al.
        Validation of a new retinopathy of prematurity screening method monitoring longitudinal postnatal weight and insulinlike growth factor I.
        Arch Ophthalmol. 2009; 127: 622-627
        • Perez-Munuzuri A.
        • Fernandez-Lorenzo J.
        • Couce-Pico M.
        • et al.
        Serum levels of IGF1 are a useful predictor of retinopathy of prematurity.
        Acta Paediatr. 2010; 99: 519-525
        • Wallace D.K.
        • Kylstra J.A.
        • Phillips S.J.
        • et al.
        Poor postnatal weight gain: a risk factor for severe retinopathy of prematurity.
        J AAPOS. 2000; 4: 343-347
        • Fortes Filho J.B.
        • Bonomo P.P.
        • Maia M.
        • et al.
        Weight gain measured at 6 weeks after birth as a predictor for severe retinopathy of prematurity: study with 317 very low birth weight preterm babies.
        Graefes Arch Clin Exp Ophthalmol. 2009; 247: 831-836
        • Jensen A.K.
        • Ying G.S.
        • Huang J.
        • et al.
        Postnatal serum insulin-like growth factor I and retinopathy of prematurity.
        Retina. 2017; 37: 867-872
        • Ahmad I.
        • Zaldivar F.
        • Iwanaga K.
        • et al.
        Inflammatory and growth mediators in growing preterm infants.
        J Pediatr Endocrinol Metab. 2007; 20: 387-396
        • Grimberg A.
        • Cohen P.
        Role of insulin-like growth factors and their binding proteins in growth control and carcinogenesis.
        J Cell Physiol. 2000; 183: 1-9
        • Hikino S.
        • Ihara K.
        • Yamamoto J.
        • et al.
        Physical growth and retinopathy in preterm infants: involvement of IGF-I and GH.
        Pediatr Res. 2001; 50: 732-736
        • Langford K.
        • Nicolaides K.
        • Miell J.P.
        Maternal and fetal insulin-like growth factors and their binding proteins in the second and third trimesters of human pregnancy.
        Hum Reprod. 1998; 13: 1389-1393
        • Lineham J.D.
        • Smith R.M.
        • Dahlenburg G.W.
        • et al.
        Circulating insulin-like growth factor I levels in newborn premature and full-term infants followed longitudinally.
        Early Hum Dev. 1986; 13: 37-46
        • Royston P.
        • Moons K.G.
        • Altman D.G.
        • et al.
        Prognosis and prognostic research: developing a prognostic model.
        BMJ. 2009; 338: 1373-1377
        • Altman D.G.
        • Vergouwe Y.
        • Royston P.
        • et al.
        Prognosis and prognostic research: validating a prognostic model.
        BMJ. 2009; 338: 1432-1435
        • Moons K.G.
        • Altman D.G.
        • Vergouwe Y.
        • et al.
        Prognosis and prognostic research: application and impact of prognostic models in clinical practice.
        BMJ. 2009; 338: 1487-1490
        • Duhaime A.C.
        • Alario A.J.
        • Lewander W.J.
        • et al.
        Head injury in very young children: mechanisms, injury types, and ophthalmologic findings in 100 hospitalized patients younger than 2 years of age.
        Pediatrics. 1992; 90: 179-185
        • Lucey J.F.
        • Dangman B.
        A reexamination of the role of oxygen in retrolental fibroplasia.
        Pediatrics. 1984; 73: 82-96
        • Ng Y.K.
        • Fielder A.R.
        • Shaw D.E.
        • et al.
        Epidemiology of retinopathy of prematurity.
        Lancet. 1988; 2: 1235-1238
        • Schaffer D.B.
        • Palmer E.A.
        • Plotsky D.F.
        • et al.
        Prognostic factors in the natural course of retinopathy of prematurity. The cryotherapy for retinopathy of prematurity cooperative group.
        Ophthalmology. 1993; 100: 230-237
        • Hutchinson A.K.
        • O'Neil J.W.
        • Morgan E.N.
        • et al.
        Retinopathy of prematurity in infants with birth weights greater than 1250 grams.
        J AAPOS. 2003; 7: 190-194
        • Yanovitch T.L.
        • Siatkowski R.M.
        • McCaffree M.
        • et al.
        Retinopathy of prematurity in infants with birth weight>or=1250 grams-incidence, severity, and screening guideline cost-analysis.
        J AAPOS. 2006; 10: 128-134
        • Gilbert C.
        Retinopathy of prematurity: a global perspective of the epidemics, population of babies at risk and implications for control.
        Early Hum Dev. 2008; 84: 77-82
        • Mohamed S.
        • Schaa K.
        • Cooper M.E.
        • et al.
        Genetic contributions to the development of retinopathy of prematurity.
        Pediatr Res. 2009; 65: 193-197
        • Ben Sira I.
        • Nissenkorn I.
        • Kremer I.
        Retinopathy of prematurity.
        Surv Ophthalmol. 1988; 33: 1-16
        • Fielder A.R.
        • Shaw D.E.
        • Robinson J.
        • et al.
        Natural history of retinopathy of prematurity: a prospective study.
        Eye (Lond). 1992; 6: 233-242
        • Shohat M.
        • Reisner S.H.
        • Krikler R.
        • et al.
        Retinopathy of prematurity: incidence and risk factors.
        Pediatrics. 1983; 72: 159-163
        • van Sorge A.J.
        • Schalij-Delfos N.E.
        • Kerkhoff F.T.
        • et al.
        Reduction in screening for retinopathy of prematurity through risk factor adjusted inclusion criteria.
        Br J Ophthalmol. 2013; 97: 1143-1147
        • Binenbaum G.
        • Ying G.S.
        • Quinn G.E.
        • et al.
        A clinical prediction model to stratify retinopathy of prematurity risk using postnatal weight gain.
        Pediatrics. 2011; 127: e607-e614
        • Frisen M.
        Statistical surveillance: optimality and methods.
        Int Stat Rev. 2003; 71: 403-434
        • Roberts S.W.
        A comparison of some control chart procedures.
        Technometrics. 1966; 8 (35): 411-430
        • Shiryaev A.
        On optimum methods in quickest detection problems.
        Theory Probab Appl. 1963; 8: 22-46
        • Wu C.
        • Lofqvist C.
        • Smith L.E.
        • et al.
        Importance of early postnatal weight gain for normal retinal angiogenesis in very preterm infants: a multicenter study analyzing weight velocity deviations for the prediction of retinopathy of prematurity.
        Arch Ophthalmol. 2012; 130: 992-999
        • Wu C.
        • Vanderveen D.K.
        • Hellstrom A.
        • et al.
        Longitudinal postnatal weight measurements for the prediction of retinopathy of prematurity.
        Arch Ophthalmol. 2010; 128: 443-447
        • Hard A.L.
        • Lofqvist C.
        • Fortes Filho J.B.
        • et al.
        Predicting proliferative retinopathy in a Brazilian population of preterm infants with the screening algorithm WINROP.
        Arch Ophthalmol. 2010; 128: 1432-1436
        • Zepeda-Romero L.C.
        • Hard A.L.
        • Gomez-Ruiz L.M.
        • et al.
        Prediction of retinopathy of prematurity using the screening algorithm WINROP in a Mexican population of preterm infants.
        Arch Ophthalmol. 2012; 130: 720-723
        • Sun H.
        • Kang W.
        • Cheng X.
        • et al.
        The use of the WINROP screening algorithm for the prediction of retinopathy of prematurity in a Chinese population.
        Neonatology. 2013; 104: 127-132
        • Choi J.H.
        • Lofqvist C.
        • Hellstrom A.
        • et al.
        Efficacy of the screening algorithm WINROP in a Korean population of preterm infants.
        JAMA Ophthalmol. 2013; 131: 62-66
        • Ko C.H.
        • Kuo H.K.
        • Chen C.C.
        • et al.
        Using WINROP as an adjuvant screening tool for retinopathy of prematurity in southern Taiwan.
        Am J Perinatol. 2015; 30: 149-154
        • Eckert G.U.
        • Fortes Filho J.B.
        • Maia M.
        • et al.
        A predictive score for retinopathy of prematurity in very low birth weight preterm infants.
        Eye (Lond). 2012; 26: 400-406
        • Binenbaum G.
        • Ying G.S.
        • Quinn G.E.
        • et al.
        The CHOP postnatal weight gain, birth weight, and gestational age retinopathy of prematurity risk model.
        Arch Ophthalmol. 2012; 130: 1560-1565
        • Binenbaum G.
        • Ying G.S.
        • Tomlinson L.A.
        • et al.
        • Retinopathy of Prematurity Study Group
        Validation of the Children's Hospital of Philadelphia Retinopathy of Prematurity (CHOP ROP) model.
        JAMA Ophthalmol. 2017; 135: 871-877
        • Binenbaum G.
        • Tomlinson L.A.
        Postnatal growth and retinopathy of prematurity study: rationale, design, and subject characteristics.
        Ophthalmic Epidemiol. 2017; 24: 36-47
        • Cao J.H.
        • Wagner B.D.
        • McCourt E.A.
        • et al.
        The Colorado-retinopathy of prematurity model (CO-ROP): postnatal weight gain screening algorithm.
        J AAPOS. 2016; 20: 19-24
        • Cao J.H.
        • Wagner B.D.
        • Cerda A.
        • et al.
        Colorado retinopathy of prematurity model: a multi-institutional validation study.
        J AAPOS. 2016; 20: 220-225
        • Huang J.M.
        • Lin X.
        • He Y.G.
        • et al.
        Colorado Retinopathy of Prematurity Screening Algorithm (CO-ROP): a validation study at a tertiary care center.
        J AAPOS. 2017; 21: 152-155
        • Harrell F.J.
        Regression modeling strategies with applications to linear models, logistic regression, and survival analysis.
        Springer, New York2001
        • Zin A.A.
        • Moreira M.E.
        • Bunce C.
        • et al.
        Retinopathy of prematurity in 7 neonatal units in Rio de Janeiro: screening criteria and workload implications.
        Pediatrics. 2010; 126: e410-e417
        • Askie L.M.
        • Darlow B.A.
        • Davis P.G.
        • et al.
        Effects of targeting lower versus higher arterial oxygen saturations on death or disability in preterm infants.
        Cochrane Database Syst Rev. 2017; (CD011190)
        • Gurwin J.
        • Tomlinson L.A.
        • Quinn G.E.
        • et al.
        A Tiered Approach to Retinopathy of Prematurity Screening (TARP) using a weight gain predictive model and a telemedicine system.
        JAMA Ophthalmol. 2017; 135: 81-176
        • Quinn G.E.
        • e-ROP Cooperative Group
        Telemedicine approaches to evaluating acute-phase retinopathy of prematurity: study design.
        Ophthalmic Epidemiol. 2014; 21: 256-267